Answer:
The kinetic energy of the weight is 344.5 J
Explanation:
Given that:
Force = F = 65 newton
distance = d = 5.3 meters
We have to find change in kinetic energy ΔK.E
Now we know that, initially kinetic energy was 0 So the formula we use will be:
Work done = Change in kinetic energy
Mathematically,
W = ΔK.E
As we know W = F . d and ΔK.E = K.E(final) - K.E(initial)
So by putting values:
F . d = K.E(final) - K.E(initial)
F . d = K.E(final)
As K.E(initial) is 0 so by putting values of F and d
(65)* (5.3) = K.E(final)
344.5 J = K.E(final)
So the change in K.E will also be 344.5 J
i hope it will help you!
Answer: (a). E = 3.1656×10³⁴ √k/m
(b). f = 9.246 × 10¹² Hz
(c). Infrared region.
Explanation:
From Quantum Theory,
The energy of a proton is proportional to the frequency, from the equation;
E = hf
where E = energy in joules
h = planck's constant i.e. 6.626*10³⁴ Js
f = frequency
(a). from E = hf = 1 quanta
f = ω/2π
where ω = √k/m
consider 3 quanta of energy is lost;
E = 3hf = 3h/2π × √k/m
E = (3×6.626×10³⁴ / 2π) × √k/m
E = 3.1656×10³⁴ √k/m
(b). given from the question that K = 15 N/m
and mass M = 4 × 10⁻²⁶ kg
To get the frequency of the emitted photon,
Ephoton =hf = 3h/2π × √k/m (h cancels out)
f = 3h/2π × √k/m
f = 3h/2π × (√15 / 4 × 10⁻²⁶ )
f = 9.246 × 10¹² Hz
(c). The region of electromagnetic spectrum, the photon belongs to is the Infrared Spectrum because the frequency ranges from about 3 GHz to 400 THz in the electromagnetic spectrum.
Answer:
R min = 28.173 ohm
R max = 1.55 ×
ohm
Explanation:
given data
capacitor = 0.227 μF
charged to 5.03 V
potential difference across the plates = 0.833 V
handled effectively = 11.5 μs to 6.33 ms
solution
we know that resistance range of the resistor is express as
V(t) =
...........1
so R will be
R =
....................2
put here value
so for t min 11.5 μs
R = 
R min = 28.173 ohm
and
for t max 6.33 ms
R max =
R max = 1.55 ×
ohm
Answer:
88750 N
Explanation:
given data:
plastic deformation σy=266 MPa=266*10^6 N/m^2
cross-sectional area Ao=333 mm^2=333*10^-6 m^2
solution:
To determine the maximum load that can be applied without
plastic deformation (Fy).
Fy=σy*Ao
=88750 N
1 micro gram of Strontium-90 has an activity of
0.0000053 terabecquerels (TBq),
Explanation:
Given information denotes that .,one gram of Strontium-90 has an activity of 5.3 terabecquerels (TBq)
the activity of 1 micro gram is
1 gram = 1,000,000 micro gram has activities of 5.3 terabecquerels
therefore 1 micro gram has the activity of (5.3 ÷ 1,000,000 = 0.0000053 )
= 
Hence ., 1 micro gram of Strontium-90 has an activity of
0.0000053 terabecquerels (TBq),