Answer:8.1 m
Explanation:
Given
ball is launched from height of 3 m
initial velocity 
considering the ball is thrown vertically upward
Using 
where,
u=initial velocity
v=final Velocity
a=acceleration
s=distance
At maximum height final velocity will be zero



Therefore maximum height w.r.t ground is 
Answer
given,
mass of ball = 5.93 kg
length of the string = 2.35 m
revolve with velocity of 4.75 m/s
acceleration due to gravity = 9.81 m/s²
T cos θ = mg
T cos θ = 
T cos θ = 58.17






T² - 56.93T - 3383.75 = 0
T = 93.22 N

θ = 51.39°
Answer:
If x₁=12 cm then k=1.7985 N/m
If x₂=15 cm then k=1.4388 N/m
Explanation:
Hanging mass= 22 g=0.022 kg
Acceleration due to gravity g=9.81 m/s²
If x₁=displacement= 12 cm=0.12 m
k= spring constant


∴k = 1.7985 N/m
If x₂=15 cm=0.15 m
Force of the hanging mass is same however the spring constant will change

∴k = 1.4388 N/m
As the mass is not changing the spring constant has to change. That means that here there are two spring one with k=1.7985 N/m and the other with k= 1.4388 N/m
Answer:
Explanation:
The acceleration of gravity is 9.8m/s^2.
So to calculate the time it will take to make the ball stop(which btw means the ball now reach its greatest height), use the formula V1=V0+at. V1 is the final velocity(which is 0), V0 is the starting velocity(which is 30m/s), and the a(cceleration) is 9.8m/s^2.
(You can ignore the fact "at" is -30 instead 30, it's because the directions two velocity travel are opposite. )
We can now know the time it takes to make the ball stop just by the gravitational force is about 3 sec.
Use another formula S=1/2at^2, to find out the S(height) is 1/2*9.8*3^2=44.1, which is approximately D.45m .