Answer:
the loss of energy due to the Joule effect is the cause of the non-ohmic characteristic of the bulb
Explanation:
A resistance is formed of some type of metal, in a light bulb it is Tungsten, which for low current is a resistance that complies with the ohm law.
When the value of the current is increased the shock of the electors creates a Joule effect, which heats the metal, these shocks are due to atomic imperfections of the structure, this heating creates a loss of energy of the system that causes the characteristic to be lost linear between the voltage and the current, since the total energy balance must be preserved.
An approximate measure of the energy that is emitted is given by Stefan's law.
In short, the loss of energy due to the Joule effect is the cause of the non-ohmic characteristic of the bulb
Answer:
The head on Collison because you have both cars going (for the sake of it 30mph) and they both collide the energy from that is 60mph because the speed is combined with the two cars.
Answer:
m = 8
Explanation:
A telescope is a device that allows us to see objects that were very far from us, it is built by the combination of two lenses, the one with the lowest focal length near the eye and that is the one or the one with the greatest focal length, the most eye-flounder . The magnification of the telescope is
m = - f₀ /
Where f₀ is the focal length of the lens and f_{e} is the false distance of the eyepiece.
It is this problem that gives us the diopter of each lens, these are related to the focal length in meters
D = 1 / f
Let's find the focal length
f₁ = 1 / D₁
f₁ = 1 / 1.16
f₁ = 0.862 m
f₂ = 1 / 9.37
f₂ = 0.1067 m
Therefore, the lens with f₂ is the eyepiece and the slow one with the
distance focal f₁ is the objective.
Let's calculate
m = - f₂ / f₁
m = - 0.862 / 0.1067
m = 8
Answer:
Explanation:
Wavelength is one way of measuring the size of waves. ... The wavelength of a transverse wave can be measured as the distance between two adjacent crests. The wavelength of a longitudinal wave can be measured as the distance between two adjacent compressions.Feb 19, 2021
Yes, this is true. The only celestial body in the Milky Way universe that produces light is the Sun. It is the sole source of light for all the other planets and satellites. Our moon only 'borrows' light from the Sun. The surface of the moon acts as the mirror at which the Sun's light is reflected.