The dissolution of a solute in a solvent to form a solution usually occur in three steps, which are delta H1, delta H2 and delta H3.
For dissolving an ionic solid, the lattice energy, which is the energy that is holding the ionic particles in place correspond to DELTA H2 and it is the energy that must be conquered. The higher the charge in the ionic solid, the higher the lattice energy. The lattice energy must be overcome in order for the solid to dissolve.
Answer:
The heat of reaction is basically the energy that is being released and or absorbed when chemicals are transformed in a type of chemical reaction. However, the heat of reaction or also called reaction enthalpy is mostly or typically expressed as a molar enthalpy in kJ/mol and or as just a specific enthalpy in kJ/kg or kJ/L.
Answer:
The magnesium atom loses 2 electron to the 2 atoms of chlorine. The 7 valency electrons of each chlorine atom will now be 8 to attain stable configuration. The final compound is written as MgCl2.
Explanation:
Ionic compounds are compound formed from the transfer of electron(s). One atom of the element loses electron(s) while the other atom gains electron(s).
The compound Magnesium chloride is an ionic compound . The bond between an atom of magnesium and 2 atoms of chlorine is an ionic bonding.
The valency electron of magnesium is 2 electron , for the atom of magnesium to attain octet rule, it will easily lose it 2 electrons to the chlorine atoms.
The chlorine atom on the other hand has 7 valency electrons, to attain octet configuration it will most likely gain 1 electron to become stable.
The magnesium atom loses 2 electron to the 2 atoms of chlorine. The 7 valency electrons of each chlorine atom will now be 8 to attain stable configuration. The final compound is written as MgCl2.
Answer:
3,85 g of Fe
Explanation:
1- The first thing to do is calculate the molar mass of the Fe2O3 compound. With the help of a periodic table, the weights of the atoms are searched, and the sum is made:
Molar mass of Fe2O3 = (2 x mass of Fe) + (3 x mass of O) = 2 x 55.88 g + 3 x 15.99 g = 159.65 g / mol
Then, one mole of Fe2O3 has a mass of 159.65 grams.
2- Then, the relationship between the Fe2O3 that will react and the iron to be produced. With the previous calculation, we can say that with one mole of Fe2O3, two moles of Fe can be produced. Passing this relationship to the molar masses, it would be as follows:
1 mole of Fe2O3_____ 2 moles of Fe
159.65 g of Fe2O3_____ 111.76 g of Fe
3- Finally, the calculation of the mass that can be produced of Fe is made, starting from 5.50 g of Fe2O3
159.65 g of Fe2O3 _____ 111.76 g of Fe
5.50 g of Fe2O3 ______ X = 3.85 g of Fe
<em>Calculation: 5.50 g x 111.76 g / 159.65 g = 3.85 g
</em>
The answer is that 3.85 g of Fe can be produced when 5.50 g of Fe2O3 react
Well i did some research and i found out now im not sure if this is completely true but supposedly tachyons are even faster than the speed of light