Answer:
0.1667 m/s
Explanation:
m1V1 + m2V2 = m1V3 + m2V4
0.01 = ( 0.0075) + (0.015 * V4)
V4 = (0.01 - 0.0075) / (0.015)
V4= 0.1667
A) We balance the masses: 4(1.00728) vs 4.0015 + 2(0.00055)4.02912 vs. 4.0026This shows a "reduced mass" of 4.02912 - 4.0026 = 0.02652 amu. This is also equivalent to 0.02652/6.02E23 = 4.41E-26 g = 4.41E-29 kg.
b) Using E = mc^2, where c is the speed of light, multiplying 4.41E-29 kg by (3E8 m/s)^2 gives 3.96E-12 J of energy.
c) Since in the original equation, there is only 1 helium atom, we multiply the energy result in b) by 9.21E19 to get 3.65E8 J of energy, or 365 MJ of energy.
Answer:
33.65°
Explanation:
radius, r = 53.1 m
m = 2.9 Mg = 2.9 x 10^6 g = 2900 kg
v = 67 km/h
convert km/h into m/s
v = 18.61 m/s
Let the angle of banking of road is θ, without friction


tan θ = 0.6655
θ = 33.65°
Thus, the angle of banking of road is 33.65°.