This is true!!
Good luck hope this helped!
Answer:
It can be concluded that the star is moving away from the observer.
Explanation:
Spectral lines will be shifted to the blue part of the spectrum if the source of the observed light is moving toward the observer, or to the red part of the spectrum when is moving away from the observer (that is known as the Doppler effect).
The wavelength at rest for this case is 434 nm and 410 nm (
,
)

Since,
(444nm) is greater than
(434 nm) and
(420nm) is greater than
(410 nm), it can be concluded that the star is moving away from the observer
Answer:
B) waves speed up
C) waves bend away from the normal
Explanation:
The index of refraction of a material is the ratio between the speed of light in a vacuum and the speed of light in that medium:

where
c is the speed of light in a vacuum
v is the speed of light in the medium
We can re-arrange this equation as:

So from this we already see that if the index of refraction is lower, the speed of light in the medium will be higher, so one correct option is
B) waves speed up
Moreover, when light enters a medium bends according to Snell's Law:

where
are the index of refraction of the 1st and 2nd medium
are the angles made by the incident ray and refracted ray with the normal to the interface
We can rewrite the equation as

So we see that if the index of refraction of the second medium is lower (
), then the ratio
is larger than 1, so the angle of refraction is larger than the angle of incidence:

This means that the wave will bend away from the normal. So the other correct option is
C) waves bend away from the normal
<span>A. crest, crest
hope im right!(: </span>
Answer:
Speed, 
Explanation:
Given that,
Distance covered by the electron, d = 32 cm = 0.32 m
Time, t = 2 ns
We need to find the speed of an electron. Speed is equal to distance covered divided by time. So,

So, the speed of the electron is
.