Answer:
2.8 x 10²³ molecules H₂O
1.4 x 10²³ molecules O₂
Explanation:
First, you will need the balanced chemical equation for the formation of water:
2H₂ + O₂ -> 2H₂O
This will help in determining the mole ratios between water and oxygen, which we will need later.
Let's first calculate the number of H₂O (water) molecules. This will require stoichiometry. We are also given the mass, so we must convert mass into moles, then moles into molecules. mass -> moles -> molecules
8.5 g H₂O x (1 mol H₂O/18.01528 g H₂O) x (6.02 x 10²³ molecules H₂O/1 mol H₂O) = 2.8404 x 10²³ molecules H₂O
Rounded to 2 significant digits: 2.8 x 10²³ molecules H₂O
Now, to find the molecules of water, we can begin with the same stoichiometric equation, but before we convert to molecules, we will have to convert moles of water to moles of oxygen. This is where we will use the mole ratio of water to oxygen we got from the balanced chemical equation earlier. 2H₂O:1O₂
8.5 g H₂O x (1 mol H₂O/18.01528 g H₂O) x (1 mol O₂/2 mol H₂O) x (6.02 x 10²³ molecules O₂/1 mol O₂) = 1.4202 x 10²³ molecules O₂
Rounded to 2 significant digits: 1.4 x 10²³ molecules O₂
Because pure silicon is a perfect semiconductor.
For room temperature, it rarely conducts, you can search for the threshold temperature, the characteristic equation is fairly complicated.
Hey there!
Compounds with ionic bonds have higher melting points because of the forces needed to break through the strong forces of attraction holding it together.
Compounds with covalent bonds have lower melting points because less energy is needed to break the weaker forces of attraction.
So, your answer is C. Compound 1 is ionic, and compound 2 is molecular.
Hope this helps!
Saturated fats are when fatty acid contains carbon that are connected by a single bond. Unsaturated fats are when one or more carbons form a double bond with another carbon.
Answer:
0.86 moles H₂O
Explanation:
To solve this problem, it is important to first determine the balanced chemical equation. The balanced equation is necessary as it will provide the mole-to-mole ratio needed to convert between moles O₂ and moles H₂O.
The unbalanced equation:
C₈H₁₈ (l) + O₂ (g) ---> CO₂ (g) + H₂O (g)
<u>Reactants:</u> 8 carbon, 18 hydrogen, 2 oxygen
<u>Products:</u> 1 carbon, 2 hydrogen, 3 oxygen
As you can see, the equation is not balanced because there are unequal amounts of each element on both sides. Balancing the equation is a matter of guessing-and-checking to see which combination of coefficients work.
The balanced equation:
2 C₈H₁₈ (l) + 25 O₂ (g) ---> 16 CO₂ (g) + 18 H₂O (g)
<u>Reactants:</u> 16 carbon, 36 hydrogen, 50 oxygen
<u>Products:</u> 16 carbon, 36 hydrogen, 50 oxygen
Now that the equation is balanced, we can use the coefficients of O₂ and H₂O to construct our mole-to-mole ratio and perform our conversion. The final answer should have 2 sig figs to match the given value (1.2 moles). The state of matter is most likely not necessary to include in your final answer.
1.2 moles O₂ 18 moles H₂O
--------------------- x ----------------------- = 0.86 moles H₂O
25 moles O₂