Answer:
If the body is in equilibrium the two forces add up and the third is the opposite of the resultant.
F(1x)=F(1)=10 N
F(2x)=F(2)cos60=5•0.5=2.5 N
F(2y) =F(2)sin60 = 5•0.866= 4.33 N
F(3x) =- F(x)=- (10+2.5 )= -12.5 N
F(3y) =- F(2y)= - 4.33 N
F(3) = sqrt{ F(3x)²+F(3y)²} =13.23 N
tan φ = F(3y)/F(3x) =4.33/12.5=0.364
φ = 19.1⁰ (south-west)
Explanation:
The correct option is out of the screen.
As the motion of positive charge is the direction of current in the wire. From the right-hand curl rule, the magnetic field direction will be outside the paper or the screen. As the <span>wire runs left to right and carries a current in the direction from left to right, the magnetic field lines will be outside the screen.</span>
They are easy to use and more reliable
Mechanical energy (ME) is the sum of potential energy (PE) and kinetic energy (KE). When the toy falls, energy is converted from PE to KE, but by conservation of energy, ME (and therefore PE+KE) will remain the same.
Therefore, ME at 0.500 m is the same as ME at 0.830 m (the starting point). It's easier to calculate ME at the starting point because its just PE we need to worry about (but if we wanted to we could calculate the instantaneous PE and KE at 0.500 m too and add them to get the same answer).
At the start:
ME = PE = mgh
ME = 0.900 (9.8) (0.830)
ME = 7.32 J
Answer:
It reduces the melting point due to a defect in the arrangement of the crystal lattice.
Explanation:
The presence of impurities creates a disorderliness in the uniformity of the crystal structure. It lowers the melting point by a few degrees because it becomes easier to overcome the intermolecular force of attraction.
It makes the array of crystals disordered.
Lattice is a long chain three-dimensional arrangement of the molecules, atoms or ions in a crystal structure.