Answer:
The work could be either positive or negative, depending on the direction the object moves
Explanation:
If the atom is neutral, it has the same number of protons as electrons. If there are 5 electrons, there are also 5 protons.
Answer:
(d) a net external force must be acting on the system
Explanation:
Momentum is given as the product of mass and velocity.
P = MV
According to Newton's second law of motion, " Force applied to a body (system) is directly proportional to the rate of change of momentum of the body (system) which takes place in the direction of the applied force (external force).
F ∝ΔMV
Therefore, If the total momentum of a system is changing, a net external force must be acting on the system.
(d) a net external force must be acting on the system
Answer:
Power, P = 600 watts
Explanation:
It is given that,
Mass of sprinter, m = 54 kg
Speed, v = 10 m/s
Time taken, t = 3 s
We need to find the average power generated. The work done divided by time taken is called power generated by the sprinter i.e.

Work done is equal to the change in kinetic energy of the sprinter.


P = 900 watts
So, the average power generated by the sprinter is 900 watts. Hence, this is the required solution.
Considering conservation of momentum;
m1v1 + m2v2 = m3v3
In which,
m1 = mass of snowball 1 = 0.4 kg
v1 = velocity of snowball 1 = 15 m/s
m2 = mass of snowball 2 = 0.6 kg
v2 = velocity of snow ball 2 = 15 m/s
m3 = combined mass = 1 kg
v3 = velocity after comination
Therefore;
0.4*15 + 0.6*15 = 1*v3
v3 = 6+9 = 15 m/s
KE = 1/2mv^2
Then,
KE1 = 1/2*0.4*15^2 = 45 J
KE2 = 1/2*0.6*15^2 = 67.5 J
KE3 = 1/2*1*15^2 = 112.5 J
Therefore, KE3 (kinetic energy after collision) = K1+K2 {kinetic energy before collision). And thus it is 100%.