Method 1: gravimetry
advantages: Impurities in the sample can be identified
disadvantages: The process is long, because it goes through several stages
Method 2: titration
advantages: the process is fast, because the titrate and titrant react immediately
disadvantages: Sometimes the determination of the end point of the titration is carried out too fast or too slowly so that the calculations carried out are inaccurate
The image of the bonds are missing, so i have attached it.
Answer:
A) - Sigma bond
-Sp³ and Sp³
- None
B) - Sigma and pi bond
- Sp² of C and p of O
- p of C and P of O
Explanation:
A) For compound 1;
- the molecular orbital type is sigma bond due to the end-to-end overlapping.
- Atomic orbitals in the sigma bond will be Sp³ and Sp³
- Atomic orbitals in the pi bond would be nil because there is no pi bond.
B) For compound 2;
- the molecular orbital type is sigma and pi bond
-Atomic orbitals in the sigma bond would be Sp² of C and p of O
- The Atomic orbitals in the pi bond will be; p of C and p of O
<u>Answer:</u> For the given amount of sweat lost, the amount of energy required will be 692,899 Joules.
<u>Explanation:</u>
We are given:
Heat of vaporization for water = 2257 J/g
Amount of sweat lost = 307 grams
Applying unitary method:
For 1 g of sweat lost, the energy required is 2257 Joules
So, for 307 grams of sweat lost, the energy required will be = 
Hence, for the given amount of sweat lost, the amount of energy required will be 692,899 Joules.
Answer: The answer is B
Explanation:
RiP BoZo. shout out to faze gabi staright up bopped potato girl.
Answer:
Approximately
.
Explanation:
The Lyman Series of a hydrogen atom are due to electron transitions from energy levels
to the ground state where
. In this case, the electron responsible for the line started at
and transitioned to
A hydrogen atom contains only one electron. As a result, Bohr Model provides a good estimate of that electron's energy at different levels.
In Bohr's Model, the equation for an electron at energy level
(
(note the negative sign in front of the fraction,)
where
is a constant.
is the atomic number of that atom.
for hydrogen.
is the energy level of that electron.
The electron that produced the
line was initially at the
.
The electron would then transit to energy level
. Its energy would become:
.
The energy change would be equal to
.
That would be the energy of a photon in that
spectrum line. Planck constant
relates the frequency of a photon to its energy:
, where
is the energy of the photon.
is the Planck constant.
is the frequency of that photon.
In this case,
. Hence,
.
Note that
.