Answer: The pH of an aqueous solution of .25M acetic acid is 2.7
Explanation:

cM 0 0
So dissociation constant will be:

Give c= 0.25 M and
= ?

Putting in the values we get:


![[H^+]=c\times \alpha](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Ctimes%20%5Calpha)
![[H^+]=0.25\times 0.0084=0.0021](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.25%5Ctimes%200.0084%3D0.0021)
Also ![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
![pH=-log[0.0021]=2.7](https://tex.z-dn.net/?f=pH%3D-log%5B0.0021%5D%3D2.7)
Thus pH is 2.7
There are 12 carbon atoms, 22 hydrogen atoms, and 11 oxygen atoms in one molecule of C12H22O11.
In five molecules there are 60 carbon atoms, 110 hydrogen atoms, and 55 oxygen atoms.
Answer:
Step 1: The Unbalanced Chemical Equation. The unbalanced chemical equation is given to you. ...
Step 2: Make a List. ...
Step 3: Identifying the Atoms in Each Element. ...
Step 4: Multiplying the Number of Atoms. ...
Step 5: Placing Coefficients in Front of Molecules. ...
Step 6: Check Equation. ...
Step 7: Balanced Chemical Equation.
Explanation:
Answer:
Option (B) 3.
Explanation:
In the model represented above, the two extreme represent carbon atoms since no other group are attached to it. The joint at the middle also represent carbon atom.
Thus, we can write a more simplify illustration for the model above as
C—C—C
From the above illustration, we can see that the model contains 3 carbon atom.
Answer:
7.8 grams per cm
Explanation:
to get density you need the mass and volume then you divide them so
81.9 grams/10.5 cm gives 7.8g/cm