The solution is as follows:
K = [Partial pressure of isoborneol]/[Partial pressure of borneol] = 0.106
The molar mass of isoborneol/borneol is 154.25 g/mol
Mol isoborneol = 15 g/154.25 = 0.0972 mol
Mol borneol = 7.5 g/154.25 = 0.0486 mol
Use the ICE approach
borneol → isoborneol
I 0.0972 0.0486
C -x +x
E 0.0972 - x 0.0486 + x
Total moles = 0.1458
Using Raoult's Law,
Partial Pressure = Mole fraction*Total Pressure
[Partial pressure of isoborneol] = [(0.0972-x)/0.1458]*P
[Partial pressure of borneol] = [(0.0486+x/0.1458)]*P
0.106 = [(0.0972-x)/0.1458]*P/ [(0.0486+x/0.1458)]*P
Solving for x,
x = 0.0832
Thus,
<em>Mol fraction of borneol = (0.0486+0.0832)/0.1458 = 0.904</em>
<em>Mol fraction of isoborneol = (0.0972-0.0832)/0.1458 = 0.096</em>
Answer:
A. It is possible not all of the water was evaporated from the sand, causing the recovered mass to be higher
D. While drying the NaCl, the liquid boiled and some splattered out of the evaporating dish, causing the recovered mass to be higher.
Explanation:
Sand absorbs water and stores it. The sunlight causes the water to evaporate but sand can hold some of the water inside it. This results in increase in mass of the sand. The mass of sand before and after the water evaporation can be different.
A producer gets it's matter from it's surroundings. E.g a plant will get minerals and water from the ground through it's roots for photosynthesis.
Plants can also produce food by using the sun's light for photolysis of the water molecules. (Basically splitting the H20 into Hydrogen and O2 (oxygen gas). They release oxygen back into the air and combine the Hydrogen ion with carbon dioxide that they obtained from the air to create sugar (glucose) which is basically chemical food for the plants. This is the summed up process of photosynthesis.
Answer:
I think it's replacement because the B and D just swap places in the end equation