Answer:
0.043 M
Explanation:
The reaction that takes place is:
- Ca(OH)₂ + 2HCl → CaCl₂ + 2H₂O
First we <u>calculate how many HCl moles reacted</u>, using the <em>given concentration and volume required to reach the equivalence point</em>:
- 0.029 M HCl * 37.3 mL = 1.0817 mmol HCl = 1.0817 mmol H⁺
As 1 mol of H⁺ reacts with 1 mol of OH⁻, in the 25.0 mL of the Ca(OH)₂ sample there are 1.0817 mmoles of OH⁻.
With that in mind we can <u>calculate the hydroxide ion concentration in the original sample solution</u>, using <em>the calculated number of moles and given volume</em>:
- 1.0817 mmol OH⁻ / 25.0 mL = 0.043 M
Answer: Please see answer below
Explanation:
Mecury vapor lamp is better to use than Sodium vapor light, this is because because
---The Filaments of the lamp in sodium emit fast moving electrons, which causes valence electrons of the sodium atoms to excite to higher energy levels which when electrons after being excited, relax by emitting yellow light which concentrates on the the monochromatic bright yellow part of the visible spectrum which is about 580-590 or about (589nm) which will fall incident on the calibrations making it difficult to see
While
In Mercury vapor lamp, The emitted electrons from the filaments, after having been excited by high voltage, hit the mercury atoms but the excited electrons of mercury atoms relax and emits an ultraviolet uv invisible lights falling on the mecury vapour lamp to produce white light covering a wide range of (380-780 nm) which is visible that is why it is used for calibrations purposes in lightening applications.
Answer:
The reaction quotient (Q) before the reaction is 0.32
Explanation:
Being the reaction:
aA + bB ⇔ cC + dD
![Q=\frac{[C]^{c} *[D]^{d} }{[A]^{a}*[B]^{b} }](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%2A%5BB%5D%5E%7Bb%7D%20%20%7D)
where Q is the so-called reaction quotient and the concentrations expressed in it are not those of the equilibrium but those of the different reagents and products at a certain instant of the reaction.
The concentration will be calculated by:

You know the reaction:
PCl₅ (g) ⇌ PCl₃(g) + Cl₂(g).
So:
![Q=\frac{[PCl_{3} ] *[Cl_{2} ] }{[PCl_{5} ]}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BPCl_%7B3%7D%20%5D%20%2A%5BCl_%7B2%7D%20%5D%20%7D%7B%5BPCl_%7B5%7D%20%5D%7D)
The concentrations are:
- [PCl₃]=

- [Cl₂]=

- [PCl₅]=

Replacing:

Solving:
Q= 0.32
<u><em>The reaction quotient (Q) before the reaction is 0.32</em></u>
I believe it is A)fuel is more readily available:)
Answer:
Compound consist of molecules that are identical, this molecules are made up of atoms of two or more elements. An element is identified based on the atomic property of the element. Water as a compound is composed of 2 Hydrogen atom to 1 oxygen atom and the molecule is H2O.