Answer:
C
Step-by-step explanation:
Now, what we know is that the total distance from the dormitory to the city is 1 if expressed in fraction. What we need to know is the fraction of the journey that is scheduled as the last part.
We can get this by subtracting the fractions of the first two phases from 1.
This goes as follows:
1 - (1/5) - (2/3) = 2/15
Now, we know that the final 8 kilometers constitute a fraction of just 2/5
Hence, we know that 2/15 of the total journey is 8 kilometers.
Let the total journey distance be T. This means that 2/15 of T is 8km
2/15 * T = 8km
T = ( 8 * 15 )/2 = 120/2 = 60km
Answer:
(4+5)+(3+3) because you have eto break up the numbers
Answer:
-2 =m
Step-by-step explanation:
–15 = 4m – 7
Add 7 to each side
–15+7 = 4m – 7+7
-8 = 4m
Divide each side by 4
-8/4 = 4m/4
-2 =m
Answer:
D. y=2x-2
Step-by-step explanation:
once you plot the points, you see that the y-intercept is -2 and the rise over run is 6/3. you simplify 6/3 by dividing and get 2x. So y=2x-2.
Hope this helped!
Check the picture below.
so the perimeter of the polygon is the sum of all its sides, namely, AB + BC + CD + DA.
now, let's check how long each side is,
![\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\ \quad \\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &A&(~{{ -6}} &,&{{ -4}}~) % (c,d) &B&(~{{ -3}} &,&{{ 6}}~) \end{array} \\\\\\ d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}\\\\ -------------------------------\\\\ AB=\sqrt{[-3-(-6)]^2+[6-(-4)]^2} \\\\\\ AB=\sqrt{(-3+6)^2+(6+4)^2} \\\\\\ AB=\sqrt{3^2+10^2}\implies \boxed{AB=\sqrt{109}}\\\\ -------------------------------](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Bccccccccc%7D%0A%26%26x_1%26%26y_1%26%26x_2%26%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26A%26%28~%7B%7B%20-6%7D%7D%20%26%2C%26%7B%7B%20-4%7D%7D~%29%20%0A%25%20%20%28c%2Cd%29%0A%26B%26%28~%7B%7B%20-3%7D%7D%20%26%2C%26%7B%7B%206%7D%7D~%29%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%20%3D%20%5Csqrt%7B%28%7B%7B%20x_2%7D%7D-%7B%7B%20x_1%7D%7D%29%5E2%20%2B%20%28%7B%7B%20y_2%7D%7D-%7B%7B%20y_1%7D%7D%29%5E2%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0AAB%3D%5Csqrt%7B%5B-3-%28-6%29%5D%5E2%2B%5B6-%28-4%29%5D%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAB%3D%5Csqrt%7B%28-3%2B6%29%5E2%2B%286%2B4%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAB%3D%5Csqrt%7B3%5E2%2B10%5E2%7D%5Cimplies%20%5Cboxed%7BAB%3D%5Csqrt%7B109%7D%7D%5C%5C%5C%5C%0A-------------------------------)
![\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\ \quad \\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &B&(~{{ -3}} &,&{{6}}~) % (c,d) &C&(~{{ 4}} &,&{{ 0}}~) \end{array} \\\\ -------------------------------\\\\ BC=\sqrt{[4-(-3)]^2+[0-6]^2}\implies BC=\sqrt{(4+3)^2+(0-6)^2} \\\\\\ BC=\sqrt{7^2+(-6)^2}\implies \boxed{BC=\sqrt{85}}\\\\ -------------------------------](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Bccccccccc%7D%0A%26%26x_1%26%26y_1%26%26x_2%26%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26B%26%28~%7B%7B%20-3%7D%7D%20%26%2C%26%7B%7B6%7D%7D~%29%20%0A%25%20%20%28c%2Cd%29%0A%26C%26%28~%7B%7B%204%7D%7D%20%26%2C%26%7B%7B%200%7D%7D~%29%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0ABC%3D%5Csqrt%7B%5B4-%28-3%29%5D%5E2%2B%5B0-6%5D%5E2%7D%5Cimplies%20BC%3D%5Csqrt%7B%284%2B3%29%5E2%2B%280-6%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ABC%3D%5Csqrt%7B7%5E2%2B%28-6%29%5E2%7D%5Cimplies%20%5Cboxed%7BBC%3D%5Csqrt%7B85%7D%7D%5C%5C%5C%5C%0A-------------------------------)

![\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\ \quad \\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &D(~{{ 2}} &,&{{-1}}~) % (c,d) &A&(~{{ -6}} &,&{{ -4}}~) \end{array}\\\\ -------------------------------\\\\ DA=\sqrt{[-6-2]^2+[-4-(-1)]^2}\\\\\\ DA=\sqrt{(-6-2)^2+(-4+1)^2} \\\\\\ DA=\sqrt{(-8)^2+(-3)^2}\implies \boxed{DA=\sqrt{73}}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Bccccccccc%7D%0A%26%26x_1%26%26y_1%26%26x_2%26%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26D%28~%7B%7B%202%7D%7D%20%26%2C%26%7B%7B-1%7D%7D~%29%20%0A%25%20%20%28c%2Cd%29%0A%26A%26%28~%7B%7B%20-6%7D%7D%20%26%2C%26%7B%7B%20-4%7D%7D~%29%0A%5Cend%7Barray%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0ADA%3D%5Csqrt%7B%5B-6-2%5D%5E2%2B%5B-4-%28-1%29%5D%5E2%7D%5C%5C%5C%5C%5C%5C%20DA%3D%5Csqrt%7B%28-6-2%29%5E2%2B%28-4%2B1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ADA%3D%5Csqrt%7B%28-8%29%5E2%2B%28-3%29%5E2%7D%5Cimplies%20%5Cboxed%7BDA%3D%5Csqrt%7B73%7D%7D)
sum those sides up, and that's the perimeter of the polygon.