When a charged object is brought near to but does not touch a neutral object, it causes the side of the neutral object that the charged object is near to become the other charge. It causes charge migration within the neutral object so the two charges (positive and negative) move to opposite sides of the object. Because the two objects do not touch, they do not repel each other, but rather have a slight attraction because of charge migration. If the two object were to touch then they would repel.
d(t) = 1.1t² + t + 1
The constant speed required to cover the same distance between t = 3 to t = 5 is the same as the average speed over that same time interval. It is given by:
v = Δx/Δt
v = average speed, Δx = change in distance, Δt = elapsed time
Given values:
Δx = d(5) - d(3) = 19.6ft
Δt = 5s - 3s = 2s
Plug in and solve for v:
v = 19.6/2
v = 9.8ft/s
Answer:
44J
Explanation:
Given parameters:
Mass of rock = 0.22kg
Initial velocity = 20m/s
Distance moved = 10m
Unknown:
Initial kinetic energy of the rock = ?
Solution:
To solve this problem, we need to understand that kinetic energy is the energy due to the motion of a body.
It is mathematically expressed as;
Kinetic energy =
m v²
m is the mass
v is the velocity
Kinetic energy =
x 0.22 x 20² = 44J
Answer it's 1,445 A
Explanation:
Basically 9,875 - what will give you 8,430 that's what's its asking. Its just a gap.
Answer:
Precipitation is the formation of a solid from a solution. It is necessary to centrifuge the precipitate to exert sufficient forces of gravity to bring the solid particles in the solution to come together and settle
Explanation:
When you centrifuge precipitate it enables the nucleation to form.
Centrifuging the precipitate helps in determining whether a certain element is present in a solution or not.