Newton’s first law is commonly stated as:
An object at rest stays at rest and an object in motion stays in motion.
However, this is missing an important element related to forces. We could expand it by stating:
An object at rest stays at rest and an object in motion stays in motion at a constant speed and direction unless acted upon by an unbalanced force.
By the time Newton came along, the prevailing theory of motion—formulated by Aristotle—was nearly two thousand years old. It stated that if an object is moving, some sort of force is required to keep it moving. Unless that moving thing is being pushed or pulled, it will simply slow down or stop. Right?
This, of course, is not true. In the absence of any forces, no force is required to keep an object moving. An object (such as a ball) tossed in the earth’s atmosphere slows down because of air resistance (a force). An object’s velocity will only remain constant in the absence of any forces or if the forces that act on it cancel each other out, i.e. the net force adds up to zero. This is often referred to as equilibrium. The falling ball will reach a terminal velocity (that stays constant) once the force of air resistance equals the force of gravity.
Hope this help
Answer:
m = 5.22 kg
Explanation:
The force acting on the bucket is 52.2 N.
We need to find the mass of the bucket.
The force acting on the bucket is given by :
F = mg
g is acceleration due to gravity
m is mass

So, the mass of the bucket is 5.22 kg.
Potential Energy= 24m * 14kg * 9.8N/kg = 3292.8J
Homogeneity and isotropy, On large enough scales, the Universe looks pretty much the same in all directions. The big bang theory is based on two assumptions: the first is centered around Einstein's general theory of relativity, which accurately describes gravity and the interactions of matter; and the second, also known as the cosmological principle, asserts that the universe is homogeneous and isotropic on a large enough scale.
Hope this helps!
Please give Brainliest!