2.5 miles an hour but yea hope that helps
Answer:
F = 614913.88 N
Explanation:
We are given;
Mass of pile driver; m = 1800 kg
Height of fall of pole driver; h = 4.6 m
Depth driven into beam; d = 13.6 cm = 0.136 m
Now, from energy equations and applying to this question, we can write that;
Workdone = Change in potential energy
Formula for workdone is; W = F × d
While the average potential energy here is; W = mg(h + d)
Thus;
Fd = mg(h + d)
Where F is the average force exerted by the beam on the pile driver while in bringing it to rest.
Making F the subject, we have;
F = mg(h + d)/d
F = 1800 × 9.81 × (4.6 + 0.136)/0.136
F = 614913.88 N
Answer: the contact force is when you rub the balloon on a surface
Explanation:
Answer:
The magnifying power of this telescope is (-60).
Explanation:
Given that,
The focal length of the objective lens of an astronomical telescope, 
The focal length of the eyepiece lens of an astronomical telescope, 
To find,
The magnifying power of this telescope.
Solution,
The ratio of focal length of the objective lens to the focal length of the eyepiece lens is called magnifying of the lens. It is given by :


m = -60
So, the magnifying power of this telescope is 60. Therefore, this is the required solution.
Answer:
1.15*10^-5 kg/m^3
Explanation:
Given data
mass= 1kg
hieght= 40 mm
diameter= 52.5mm
radius= 53.5/2= 26.25mm
The volume of the cylinder
V=πr^2h
V=3.142*26.25^2*40
V=3.142*689.0625*40
V=86601.375 mm^3
Density= mass/volume
Density= 1/86601.375
Density=0.00001154716
Density= 1.15*10^-5 kg/m^3
Hence the density is 1.15*10^-5 kg/m^3