The loops must the coil have to generate a maximum emf of 2500 will be 439.
<h3 /><h3>What is the faraday law of electromagnetic induction?</h3>
According to Faraday's law of electromagnetic induction, the rate of change of magnetic flux linked with the coil is responsible for generating emf in the coil resulting in the flow of amount of current.
Given data;
Area,A = 0.239 m²
Angular velocity,ω=373 rad/sec
Magnetic field,B=0.0639 T
Maximum emf,E= 2500V
The formula for the maximum induced voltage is;
E{max} = N × B × A × ω
2500 = N × 0.639 × 0.0239 × 373
N = 438.66
N = 439 \ turns
Hence, loops must the coil have to generate a maximum emf of 2500 will be 439.
To learn more about the faraday law of electromagnetic induction refer to;
brainly.com/question/26334813
#SPJ1
Answer:
Dy = 111.66 [m]
t = 3.5 [s]
Explanation:
To solve this problem we must use the equations of kinematics.

where:
Vf = final velocity [m/s]
Vo = initial velocity = 27 [m/s]
g = gravity acceleration = 9.81 [m/s²]
t = time = 3.5 [s]
Note: The negative sign of the equation means that the gravity acceleration goes in opposite direction
Vf = 27 - (9,81*3,5)
Vf = - 7.33 [m/s] (this negative sign indicates that at this moment the snowball is going downwards)
To find how high the snowball was we must use the following equation:

Dy = (27*3.5) + (0.5*9.81*3.5)
Dy = 94.5 + (17.16)
Dy = 111.66 [m]
Answer:
6.4 J
Explanation:
m = mass of the bullet = 10 g = 0.010 kg
v = initial velocity of bullet before collision = 1.8 km/s = 1800 m/s
v' = final velocity of the bullet after collision = 1 km/s = 1000 m/s
M = mass of the block = 5 kg
V = initial velocity of block before collision = 0 m/s
V' = final velocity of the block after collision = ?
Using conservation of momentum
mv + MV = mv' + MV'
(0.010) (1800) + (5) (0) = (0.010) (1000) + (5) V'
V' = 1.6 m/s
Kinetic energy of the block after the collision is given as
KE = (0.5) M V'²
KE = (0.5) (5) (1.6)²
KE = 6.4 J
Answer:
b. the Paleozoic Era
Explanation:
The first vertebrates to appear are primitive fish in the Cambrian Period, but bony fishes with actual bony vertebratae didn't appear for another 100 million years. The Cambrian Period is the first of three periods in the Paleozoic Era. The Cambrian explosion was an event when practically all major animal phyla started appearing in the fossil record.