Answer: option A) initially increases, then decreases.
Justification:
The increase of the rate of effective collisions among particles as the temperature increases is explained by the collision theory in virtue of the increase of the kinetic energy.
This is, as the temperature increase so the kinetic energy increase and the higher the kinetic energy the greater the number of collisions and the greater the chances that this energy overcome the activation energy (the energy needed to start the reaction).
Now, as the reaction progress the number of reactants particles naturally decrease (some of them have been converted into product) so this lower number of particles means lower concentration which means lower collisions and, thereafter, a decrease in the reaction rate.
Answer:
(a) has the highest frequency
Explanation:
E = hf...where E(is the energy of a photon);h(is the planck's constant) and f is the frequency of the photon
Whereby this formula shows us that energy of a photon is directly proportional to its frequency
So hence if the energy is high then the frequency of the photon is also high
First, foremost, and most critically, you must look at the graph, and critically
examine its behavior from just before until just after the 5-seconds point.
Without that ability ... since the graph is nowhere to be found ... I am hardly
in a position to assist you in the process.
Answer:
I'm not a genius ok?
Explanation:
1. Radar communication, Analysis of the molecular and atomic structure, telephone communication
2. c
Answer:
70.5 mph
Explanation:
A passenger jet travels from Los Angeles to Bombay, India, in 22h.
The return flight takes 17 h.
The difference in flight times is caused by winds over the Pacific Ocean that
blow primarily from west to east.
If the jet's average speed in still air is 550 mi/h what is the average speed
of the wind during the round trip flight? Round to the nearest mile per hour.
Is your answer reasonable?
:
Let w = speed of the wind
:
Write a distance equation (dist is the same both ways
17(550+w) = 22(550-w)
9350 + 17w = 12100 - 22w
17w + 22w = 12100 - 9350
39w = 2750
W = 2750/39
w = 70.5 mph seems very reasonable
:
Confirming if the solution by finding the distances using these value
17(550+70.5) = 10549 mi
22(550-70.5) = 10549 mi; confirms our solution of w = 70.5 mph