Work-Energy :W = 1/2 m ( Vf^2 -Vo^2 )
Vo = 24.0 m/s Initial speed
Vf = 27.5 m/s Final speed
W = 1/2 m ( Vf^2 -Vo^2 )
160 kj = 1/ 2 m ( 27.5^2 -24.0 ^2)
160kj = 4680 x m
convert kilo joules to jeoules 160000 j = 4689 xm
m = 160000 j/4689
m = 34.18 kg
1.) potential energy
2.)potential and kinetic
3.)The roller coaster car has the most kinetic energy at point X i know this because the car is moving and kinetic energy has the power to move or change things therefore point X is when the roller coaster car has the most energy.
4.)potential energy
5.)kinetic energy
6.) potential and kinetic energy
Answer:
The direction of the magnetic force on a moving charge is perpendicular to the plane formed by v and B and follows right hand rule–1 (RHR-1)
Explanation:
hope this helps
Answer:
m = 105.37 kg
Explanation:
We are given;
Mass of man; m = 113 kg
Length of boat = 6.3m
Now, The position of the center of mass will not change during the motion of the man.
Thus,
X_g,i = X_g,f
So,
[113(6.3) + ma]/(113 + m) = [113(3.26) + m(a +3.26)]/(113 + m)
113 + m will cancel on both sides to give;
113(6.3) + ma = [113(3.26) + m(a +3.26)]
711.9 + ma = 368.38 + ma + 3.26m
ma will cancel out to give;
711.9 - 368.38 = 3.26m
343.52/3.26 = m
m = 105.37 kg
<h2>5.3 km</h2>
Explanation:
This question involves continuous displacement in various directions. When it becomes difficult to imagine, vector analysis becomes handy.
Let us denote each of the individual displacements by a vector. Consider the unit vectors
as the unit vectors in the direction of East and North respectively.
By simple calculations, we can derive the unit vectors
in the directions North,
South of West and
North of West respectively.
So Total displacement vector = Sum of individual displacement vectors.
Displacement vector = 
Magnitude of Displacement = 
∴ Total displacement = 