Option A looks like the best definition
theanswer is b.heart disease
There are missing data in the text of the problem (found them on internet):
- speed of the car at the top of the hill:

- radius of the hill:

Solution:
(a) The car is moving by circular motion. There are two forces acting on the car: the weight of the car

(downwards) and the normal force N exerted by the road (upwards). The resultant of these two forces is equal to the centripetal force,

, so we can write:

(1)
By rearranging the equation and substituting the numbers, we find N:

(b) The problem is exactly identical to step (a), but this time we have to use the mass of the driver instead of the mass of the car. Therefore, we find:

(c) To find the car speed at which the normal force is zero, we can just require N=0 in eq.(1). and the equation becomes:

from which we find
Answer:
f_D = =3.24 N/m
Explanation:
data given
properties of air

k = 0.0288 W/m.K
WE KNOW THAT
Reynold's number is given as


= 1.941 *10^4
drag coffecient is given as

solving for f_D


Drag coffecient for smooth circular cylinder is 1.1
therefore Drag force is

f_D = =3.24 N/m
Answer:
θ=108rad
t =10.29seconds
α=-8.17rad/s²
Explanation:
Given that
At t=0, Wo=24rad/sec
Constant angular acceleration =30rad/s²
At t=2, θ=432rad as it try to stop because the circuit break
Angular motion
W=Wo+αt
θ=Wot+1/2αt²
W²=Wo²+2αθ
We need to find θ between 0sec to 2sec when the wheel stop
a. θ=Wot+1/2αt²
θ=24×2+1/2×30×2²
θ=48+60
θ=108rad.
b. W=Wo+αt
W=24+30×2
W=84rad/s
This is the final angular velocity which is the initial angular velocity when the wheel starts to decelerate.
Wo=84rad/sec
W=0rad/s, because the wheel stop at θ=432rad
Using W²=Wo²+2αθ
0²=84²+2×α×432
-84²=864α
α=-8.17rad/s²
It is negative because it is decelerating
Now, time taken for the wheel to stop
W=Wo+αt
0=84-8.17t
-84=-8.17t
Then t =10.29seconds.
a. θ=108rad
b. t =10.29seconds
c. α=-8.17rad/s²