1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fiasKO [112]
3 years ago
12

Weight is the direct result of : A. Distance B. The amount of gravity being pulled

Physics
1 answer:
zheka24 [161]3 years ago
4 0
B i think ........................
You might be interested in
Which of the following is the best definition of an isotope?
almond37 [142]
Option A looks like the best definition
4 0
3 years ago
Being overweight or obese increases the risk of:
Svetradugi [14.3K]

theanswer is b.heart disease

3 0
2 years ago
Read 2 more answers
A 975-kg sports car (including driver) crosses the rounded top of a hill at determine (a) the normal force exerted by the road o
iVinArrow [24]
There are missing data in the text of the problem (found them on internet):
- speed of the car at the top of the hill: v=15 m/s
- radius of the hill: r=100 m

Solution:

(a) The car is moving by circular motion. There are two forces acting on the car: the weight of the car W=mg (downwards) and the normal force N exerted by the road (upwards). The resultant of these two forces is equal to the centripetal force, m \frac{v^2}{r}, so we can write:
mg-N=m \frac{v^2}{r} (1)
By rearranging the equation and substituting the numbers, we find N:
N=mg-m \frac{v^2}{r}=(975 kg)(9.81 m/s^2)-(975 kg) \frac{(15 m/s)^2}{100 m}=7371 N

(b) The problem is exactly identical to step (a), but this time we have to use the mass of the driver instead of the mass of the car. Therefore, we find:
N=mg-m \frac{v^2}{r}=(62 kg)(9.81 m/s^2)-(62 kg) \frac{(15 m/s)^2}{100 m}=469 N

(c) To find the car speed at which the normal force is zero, we can just require N=0 in eq.(1). and the equation becomes:
mg=m \frac{v^2}{r}
from which we find
v= \sqrt{gr}= \sqrt{(9.81 m/s^2)(100 m)}=31.3 m/s
7 0
3 years ago
A circular pipe of 25-mm outside diameter is placed in an airstream at 25C and 1-atm pressure. The air moves in cross flow over
kifflom [539]

Answer:

f_D = =3.24 N/m

Explanation:

data given

properties of air\nu\ of air =19.31*10^{-6} m2/s

\rho = 1.048 kg/m3

k = 0.0288 W/m.K

WE KNOW THAT

Reynold's number is given as

Re =\frac{VD}{\nu}

      = \frac{ 15*0.025}{19.31*10^{-6}}

      = 1.941 *10^4

drag coffecient is given as

C_D = \frac{f_D}{A_f\frac{\rho v^2}{2}}

solving for f_D

f_D = C_D A_f*\frac{\rho v^2}{2}

     =C_D D*\frac{\rho v^2}{2}

Drag coffecient for smooth circular cylinder is 1.1

therefore Drag force is

f_D = 1.1*0.025 *\frac{1.048*15^2}{2}

f_D = =3.24 N/m

4 0
3 years ago
At t = 0 a grinding wheel has an angular velocity of 24.0 rad/s. It has a constant angular acceleration of 30.0rad/s2 until a ci
kozerog [31]

Answer:

θ=108rad

t =10.29seconds

α=-8.17rad/s²

Explanation:

Given that

At t=0, Wo=24rad/sec

Constant angular acceleration =30rad/s²

At t=2, θ=432rad as it try to stop because the circuit break

Angular motion

W=Wo+αt

θ=Wot+1/2αt²

W²=Wo²+2αθ

We need to find θ between 0sec to 2sec when the wheel stop

a. θ=Wot+1/2αt²

θ=24×2+1/2×30×2²

θ=48+60

θ=108rad.

b. W=Wo+αt

W=24+30×2

W=84rad/s

This is the final angular velocity which is the initial angular velocity when the wheel starts to decelerate.

Wo=84rad/sec

W=0rad/s, because the wheel stop at θ=432rad

Using W²=Wo²+2αθ

0²=84²+2×α×432

-84²=864α

α=-8.17rad/s²

It is negative because it is decelerating

Now, time taken for the wheel to stop

W=Wo+αt

0=84-8.17t

-84=-8.17t

Then t =10.29seconds.

a. θ=108rad

b. t =10.29seconds

c. α=-8.17rad/s²

3 0
3 years ago
Other questions:
  • What happens when the temperature of the air cools?
    13·1 answer
  • A snowball that will be used to build a snowman is at the top of a only hill. If the
    12·1 answer
  • 5. Would the bruises on the dead man have formed in the epithelia
    8·1 answer
  • A wire is hung between two towers and has a length of 208 m. A current of 154 A exists in the wire, and the potential difference
    6·2 answers
  • How much force is needed to accelerate a 9760 kg airplane at a rate of 4.6 m/s^2
    13·1 answer
  • Help with 7,8,9 please!!
    14·1 answer
  • Assuming 70% of Earth's surface is covered in water at an average depth of 2.5 mi, estimate the mass of the water on Earth in Ki
    6·1 answer
  • Compared to yellow light, orange light has
    10·1 answer
  • A proton, starting from rest, accelerates through a potential difference of 1.0 kV and then moves into a magnetic field of 0.040
    13·1 answer
  • In order for work to be done a___<br> must be exerted on an object causing it to___
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!