If placed in water Saturn would float. This is because it is mostly made up of gas, which is less dense than water.
Answer:
D. It has a central nucleus composed of 35 protons and 45 neutrons,
surrounded by an electron cloud containing 35 electrons.
hope this was helpful ! <3
The magnitude of the electric field for 60 cm is 6.49 × 10^5 N/C
R(radius of the solid sphere)=(60cm)( 1m /100cm)=0.6m

Since the Gaussian sphere of radius r>R encloses all the charge of the sphere similar to the situation in part (c), we can use Equation (6) to find the magnitude of the electric field:

Substitute numerical values:

The spherical Gaussian surface is chosen so that it is concentric with the charge distribution.
As an example, consider a charged spherical shell S of negligible thickness, with a uniformly distributed charge Q and radius R. We can use Gauss's law to find the magnitude of the resultant electric field E at a distance r from the center of the charged shell. It is immediately apparent that for a spherical Gaussian surface of radius r < R the enclosed charge is zero: hence the net flux is zero and the magnitude of the electric field on the Gaussian surface is also 0 (by letting QA = 0 in Gauss's law, where QA is the charge enclosed by the Gaussian surface).
Learn more about Gaussian sphere here:
brainly.com/question/2004529
#SPJ4
<span>9000 Pascals
Looking on the internet, it appears that a human can only suck about 3 feet of water. So let's convert that measurement into a few more convenient units.
cmH2O = 36 * 2.54 = 91.44 cmH2O
cmHg = 91.44 * 0.73555912101486 = 67.26 mmHg
Pascal = 91.44 * 98.0665 = 8967 Pascals
PSI = 91.44 * 0.0142233 = 1.3 psi
Since we're dealing with science and the metric system is the most common system used in science, I'd recommend an answer of 9000 Pascals.</span>
It is difficult for astronomers to find object like planets and asteroids because it takes a lot of time to verify the objects locations and what surrounds a certain object in order to prove and be precise of its location