1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastasy [175]
1 year ago
11

A training pyramid increases general physical preparedness, facilitating foundational strength and reducing the risk of injury.

the purpose of the model is to build a strong foundation over time, eliminating any structural deficit the lifter may possess.
a) true
b) false
Physics
1 answer:
liubo4ka [24]1 year ago
7 0

The statement given about a training pyramid is a) True

<h3>Meaning of  a Training pyramid</h3>

A training pyramid can be defined with a pyramid in view where there are different steps from bottom to top.

A training pyramid is a training process that starts with easy and simple training tasks to difficult and hard task.

In a pyramid system you get to build step by step.

In conclusion, The statement given about a training pyramid is a) True

Learn more about a Training pyramid: https://brainly.in/question/9515867

#SPJ1

You might be interested in
One strategy in a snowball fight is to throw
faltersainse [42]

Answers:

a) \theta_{2}=23\°

b) t=1.199 s

Explanation:

This situation is a good example of the projectile motion or parabolic motion, in which the travel of the snowball has two components: <u>x-component</u> and <u>y-component</u>. Being their main equations as follows for both snowballs:

<h3><u>Snowball 1:</u></h3>

<u>x-component: </u>

x=V_{o}cos\theta_{1} t_{1}   (1)

Where:

V_{o}=11.1 m/s is the initial speed  of snowball 1 (and snowball 2, as well)

\theta_{1}=67\° is the angle for snowball 1

t_{1} is the time since the snowball 1 is thrown until it hits the opponent

<u>y-component: </u>

y=y_{o}+V_{o}sin\theta_{1} t_{1}+\frac{gt_{1}^{2}}{2}   (2)

Where:

y_{o}=0  is the initial height of the snowball 1 (assuming that both people are only on the x axis of the frame of reference, therefore the value of the position in the y-component is zero.)

y=0  is the final height of the  snowball 1

g=-9.8m/s^{2}  is the acceleration due gravity (always directed downwards)

<h3><u>Snowball 2:</u></h3>

<u>x-component: </u>

x=V_{o}cos\theta_{2} t_{2}   (3)

Where:

\theta_{2} is the angle for snowball 2

t_{2} is the time since the snowball 2 is thrown until it hits the opponent

<u>y-component: </u>

y=y_{o}+V_{o}sin\theta_{2} t_{2}+\frac{gt_{2}^{2}}{2}   (4)

Having this clear, let's begin with the answers:

<h2>a) Angle for snowball 2</h2>

Firstly, we have to isolate t_{1} from (2):

0=0+V_{o}sin\theta_{1} t_{1}+\frac{gt_{1}^{2}}{2}   (5)

t_{1}=-\frac{2V_{o}sin\theta_{1}}{g}   (6)

Substituting (6) in (1):

x=V_{o}cos\theta_{1}(-\frac{2V_{o}sin\theta_{1}}{g})   (7)

Rewritting (7) and knowing sin(2\theta)=sen\theta cos\theta:

x=-\frac{V_{o}^{2}}{g} sin(2\theta_{1})   (8)

x=-\frac{(11.1 m/s)^{2}}{-9.8 m/s^{2}} sin(2(67\°))   (9)

x=9.043 m   (10)  This is the point at which snowball 1 hits and snowball 2 should hit, too.

With this in mind, we have to isolate t_{2} from (4) and substitute it on (3):

t_{2}=-\frac{2V_{o}sin\theta_{2}}{g}   (11)

x=V_{o}cos\theta_{2} (-\frac{2V_{o}sin\theta_{2}}{g})   (12)

Rewritting (12):

x=-\frac{V_{o}^{2}}{g} sin(2\theta_{2})   (13)

Finding \theta_{2}:

2\theta_{2}=sin^{-1}(\frac{-xg}{V_{o}^{2}})   (14)

2\theta_{2}=45.99\°  

\theta_{2}=22.99\° \approx 23\°  (15) This is the second angle at which snowball 2 must be thrown. Note this angle is lower than the first angle (\theta_{2} < \theta_{1}).

<h2>b) Time difference between both snowballs</h2>

Now we will find the value of t_{1} and t_{2} from (6) and (11), respectively:

t_{1}=-\frac{2V_{o}sin\theta_{1}}{g}  

t_{1}=-\frac{2(11.1 m/s)sin(67\°)}{-9.8m/s^{2}}   (16)

t_{1}=2.085 s   (17)

t_{2}=-\frac{2V_{o}sin\theta_{2}}{g}  

t_{2}=-\frac{2(11.1 m/s)sin(23\°)}{-9.8m/s^{2}}   (18)

t_{2}=0.885 s   (19)

Since snowball 1 was thrown before snowball 2, we have:

t_{1}-t=t_{2}   (20)

Finding the time difference t between both:

t=t_{1}-t_{2}   (21)

t=2.085 s - 0.885 s  

Finally:

t=1.199 s  

7 0
2 years ago
To understand the formula for power radiated in the form of electromagnetic energy by an object at nonzero temperature. every ob
lbvjy [14]

As per Stefan - Boltzmann law we know that

1. Power radiated in the form of electromagnetic energy by an object at nonzero temperature.

2. Every object at absolute (kelvin) temperature t will radiate electromagnetic waves.

3. This radiation is typically in the infrared for objects at room temperature, with some visible light emitted for objects heated above 1000 k.

4. The formula governing the rate of energy radiation from a surface is given by p=eσat^4,

where p is the thermal power (also known as the heat current h).

Thermal radiation in visible light can be seen on hot metalwork. Its emission in the infrared is invisible to the human eye. Infrared cameras are capable of capturing this infrared emission.

Thermal radiation is electromagnetic radiation generated by the thermal motion of charged particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation. Particle motion results in charge-acceleration or dipole oscillation which produce electromagnetic radiation.

Examples of thermal radiation include the visible light and infrared light emitted by an incandescent light bulb, the infrared radiation emitted by animals that is detectable with an infrared camera, and the cosmic microwave background radiation. Thermal radiation is different from thermal convection and thermal conduction—a person near a raging bonfire feels radiant heating from the fire, even if the surrounding air is very cold.

Sunlight is part of thermal radiation generated by the hot plasma of the Sun. The Earth also emits thermal radiation, but at a much lower intensity and different spectral distribution. The Earth's absorption of solar radiation, followed by its outgoing thermal radiation, are the two most important processes that determine the temperature and climate of the Earth in most climate models.

So the correct answer which is applicable here will be

This formula applies to any object of total surface area a, kelvin temperature t, and emissivity e

here

\sigma[\tex] = stefan boltzmann constant = [tex]5.67 * 10^{-8}

3 0
2 years ago
In which scenario will the two objects have the greatest gravitational force
Brilliant_brown [7]

Answer: I think the answer C

Explanation:

7 0
2 years ago
Read 2 more answers
Lasers utilize concentrated light waves, focused precisely and used for certain applications. What are some common uses of laser
SVEN [57.7K]

its 1,3,4,5 just got it right on edge

5 0
3 years ago
Read 2 more answers
What is the process called when earth's surface is broken down into smaller pieces​
fiasKO [112]
You are LOVED and a Child of JESUS come back he has open arms God bless
6 0
2 years ago
Other questions:
  • How does energy move predictably between a lien water in the air above it
    10·1 answer
  • When all parts of a circuit are composed of conducting materials, the circuit is said to be
    10·1 answer
  • Which waves are longitude waves? Check all that apply.
    12·1 answer
  • If the direction of a magnetic field around a vertical electrical wire is counter clockwise, what direction is the electrical cu
    14·1 answer
  • The Moon takes about 27 days to orbit the Earth. Assuming a circular orbit, how fast is it orbiting? Express your answer in km/h
    11·1 answer
  • A sodium lamp emits light at the power P = 70.0 W and at the wavelength λ = 600 nm, and the emission is uniformly in all directi
    10·1 answer
  • Did the aluminum foil and the paper tent versoriums behave the way you predicted? What did you learn that could help you improve
    8·1 answer
  • What is the study of atoms​
    6·2 answers
  • A function is defined by f(x)= 6x+1.5. What is f(2.5)?
    9·1 answer
  • Pls help! Tysm!!! :D
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!