<span>The escape of gas through a small hole in a container is called effusion. This phenomenon happens when the diameter of the hole is small enough compared to the mean free path of the gas particles. This is governed by Graham's Law which states that the rate of effusion is inversely proportional to the molecular weight of the gas.</span>
The correct answers are :
Changing the volume of the system.
Changing the temperature of the system.
Equilibrium will remain unaffected if the concentration of products and reactants are kept the same, and the temperature of the system is kept constant.
As the system is closed, we cannot add or remove products or reactants.
Change in temperature will shift the chemical equilibrium towards the reactant or product depending on whether the reaction is exothermic or endothermic.
Also change in volume will shift the chemical equilibrium of a chemical reaction if the reactants or products or both are gases.
To know the answer, compare the oxidation number of the element in the reactant and the product side. The oxidation number of Al was originally +3, then became 0 after the reaction. On the other hand, Fe was originally 0, then became +2 after the reaction. When the element is oxidized, it oxidation number increases. <em>Thus, the element oxidized is Fe.</em>
<u>Answer:</u> The correct statement is low temperature only, because entropy decreases during freezing.
<u>Explanation:</u>
The relationship between Gibb's free energy, enthalpy, entropy and temperature is given by the equation:

Where,
= change in Gibb's free energy
= change in enthalpy
T = temperature
= change in entropy
It is given that freezing of methane is taking place, which means that entropy is decreasing and
is becoming negative. It is also given that the reaction is an exothermic reaction, this means that the
is also negative.
For a reaction to be spontaneous,
must be negative.
![-ve=-ve-[T(-ve)]\\\\-ve=-ve+T](https://tex.z-dn.net/?f=-ve%3D-ve-%5BT%28-ve%29%5D%5C%5C%5C%5C-ve%3D-ve%2BT)
From above equations, it is visible that
will be negative only when the temperature will be low.
Hence, the correct statement is low temperature only, because entropy decreases during freezing.
Answer:
5.19 x 10²³ molecules of H₂O
Explanation:
1 mole => 6.023 x 10²³ molecules of H₂O
0.861 mole => 0.861mole x 6.023 x 10²³ molecules of H₂O
= 5.19 x 10²³ molecules of H₂O