A lone oxygen atom has 6 electrons in its outer shell which is not very stable, whereas as full octet (8 outer shell electrons) is stable. In order to achieve this two oxygen atoms will share 4 electrons, each contributing 2 electrons. Since these electrons exist within the orbitals of both atoms, to oxygen atoms essentially achieve a full octet.
Cole coke coke coke coke coke coke coke
B) 40%
The balanced equation indicates that for every 3 moles of H2 used, 2 moles of NH3 will be produced. So the reaction if it had 100% yield would produce (2.00 / 3) * 2 = 1.333333333 moles of NH3. But only 0.54 moles were produced. So the percent yield is 0.54 / 1.3333 = 0.405 = 40.5%. This is a close enough match to option "b" to be considered correct.
Answer:
4.7 kJ/kmol-K
Explanation:
Using the Debye model the specific heat capacity in kJ/kmol-K
c = 12π⁴Nk(T/θ)³/5
where N = avogadro's number = 6.02 × 10²³ mol⁻¹, k = 1.38 × 10⁻²³ JK⁻¹, T = room temperature = 298 K and θ = Debye temperature = 2219 K
Substituting these values into c we have
c = 12π⁴Nk(T/θ)³/5
= 12π⁴(6.02 × 10²³ mol⁻¹)(1.38 × 10⁻²³ JK⁻¹)(298 K/2219 K)³/5
= 9710.83(298 K/2219 K)³/5
= 1942.17(0.1343)³
= 4.704 J/mol-K
= 4.704 × 10⁻³ kJ/10⁻³ kmol-K
= 4.704 kJ/kmol-K
≅ 4.7 kJ/kmol-K
So, the specific heat of diamond in kJ/kmol-K is 4.7 kJ/kmol-K
The answer would be 150 half of 200 and 100 is 150