Here We can use principle of angular momentum conservation
Here as we know boy + projected mass system has no external torque
Since there is no torque so we can say the angular momentum is conserved

now we know that
m = 2 kg
v = 2.5 m/s
L = 0.35 m
I = 4.5 kg-m^2
now plug in all values in above equation

![1.75 = [4.5 + 0.245]\omega](https://tex.z-dn.net/?f=1.75%20%3D%20%5B4.5%20%2B%200.245%5D%5Comega)


so the final angular speed will be 0.37 rad/s
Answer:
Incomplete questions
Let assume we are asked to find
Calculate the induced emf in the coil at any time, let say t=2
And induced current
Explanation:
Flux is given as
Φ=NAB
Where
N is number of turn, N=1
A=area=πr²
Since r=2cm=0.02
A=π(0.02)²=0.001257m²
B=magnetic field
B(t)=Bo•e−t/τ,
Where Bo=3T
τ=0.5s
B(t)=3e(−t/0.5)
B(t)=3exp(-2t)
Therefore
Φ=NAB
Φ=0.001257×3•exp(-2t)
Φ=0.00377exp(-2t)
Now,
Induce emf is given as
E= - dΦ/dt
E= - 0.00377×-2 exp(-2t)
E=0.00754exp(-2t)
At t=2
E=0.00754exp(-4)
E=0.000138V
E=0.138mV
b. Induce current
From ohms laws
V=iR
Given that R=0.6Ω
i=V/R
i=0.000138/0.6
i=0.00023A
i=0.23mA
Answer:
Average speed = 0.0075 m/s
Average velocity = 0.0025 m/s along forward direction
Explanation:
Speed is the ratio of distance and time and velocity is the ratio of displacement and time.
Distance traveled = 10 + 5 = 15 cm = 0.15 m
Displacement = 10 - 5 = 5 cm = 0.05 m
Time = 20 seconds

Average speed = 0.0075 m/s
Average velocity = 0.0025 m/s along forward direction
Answer:
D. Plate movement
Explanation:
Since they cause earthquakes...
I had a teat and the answer was A