Explanation:
Given that,
Wavelength = 6.0 nm
de Broglie wavelength = 6.0 nm
(a). We need to calculate the energy of photon
Using formula of energy



(b). We need to calculate the kinetic energy of an electron
Using formula of kinetic energy


Put the value into the formula


(c). We need to calculate the energy of photon
Using formula of energy



(d). We need to calculate the kinetic energy of an electron
Using formula of kinetic energy


Put the value into the formula


Hence, This is the required solution.
Answer:
A. Light acts as particles, causing electrons on the surface it strikes to be destroyed.
Explanation:
- The photoelectric effect is a phenomenon that occurs when light shined onto a metal surface causes the ejection of electrons from that metal. It was observed that only certain frequencies of light are able to cause the ejection of electrons.
I think the correct answer from the choices presented above is the first option. The characteristics of low energy waves are <span>long wavelengths and low frequencies. Energy is established to be indirectly proportional to wavelengths and frequencies.</span>
In order to calculate the electric field strength, we may use the formula:
E = kQ/d²
Where Q is the charge and d is the distance between the charge and the test charge. Substituting the values into the equation:
E = (9 x 10⁹)(8.7 x 10⁻⁹) / (3.5²)
E = 6.39 Newtons per coulomb
Therefore, the answer is 6.4 Newtons/coulomb
I think the events are already chronologically arranged correctly. It always have to start with the simplest elements, the hydrogen and helium. In fact, these are the elements that compose the stars. The nuclear fusion of hydrogen atoms to helium is what gives the stars and the sun their energy. So, this is followed by letter b, which is the formation of stars. Then, when these stars explode a stated in c, they produce even heavier elements. As a result, this big bang theory tells us that the universe is expanding because of this 'explosion'. In the end, it led to the formation of the sun, the planets and the universe. <em>Thus, the arrangement is: a, b, c and d.</em>