The answer is C. You divide 4000 kg/s by 115 kg.
Answer:
Wg is positive and WT negative.
(Letters in options are all wrongly written).
Explanation:
Remember that the work of a force is the internal product between the force and the displacement
.
Since the displacement is downwards like the weight, the work done by gravity is positive, while the work done by the tension is negative since it points upwards.
Answer:
The Sun's gravity pulls on the planets, just as Earth's gravity pulls down anything that is not held up by some other force and keeps you and me on the ground.
Explanation:
Hope that helps
Answer:
(a) 135 kV
(b) The charge chould be moved to infinity
Explanation:
(a)
The potential at a distance of <em>r</em> from a point charge, <em>Q</em>, is given by

where 
Difference in potential between the points is
![kQ\left[-\dfrac{1}{0.2\text{ m}} -\left( -\dfrac{1}{0.1\text{ m}}\right)\right] = \dfrac{kQ}{0.2\text{ m}} = \dfrac{9\times10^9\text{ F/m}\times3\times10^{-6}\text{ C}}{0.2\text{ m}}](https://tex.z-dn.net/?f=kQ%5Cleft%5B-%5Cdfrac%7B1%7D%7B0.2%5Ctext%7B%20m%7D%7D%20-%5Cleft%28%20-%5Cdfrac%7B1%7D%7B0.1%5Ctext%7B%20m%7D%7D%5Cright%29%5Cright%5D%20%3D%20%5Cdfrac%7BkQ%7D%7B0.2%5Ctext%7B%20m%7D%7D%20%3D%20%5Cdfrac%7B9%5Ctimes10%5E9%5Ctext%7B%20F%2Fm%7D%5Ctimes3%5Ctimes10%5E%7B-6%7D%5Ctext%7B%20C%7D%7D%7B0.2%5Ctext%7B%20m%7D%7D)

(b)
If this potential difference is increased by a factor of 2, then the new pd = 135 kV × 2 = 270 kV. Let the distance of the new location be <em>x</em>.
![270\times10^3 = kQ\left[-\dfrac{1}{x}-\left(-\dfrac{1}{0.1\text{ m}}\right)\right]](https://tex.z-dn.net/?f=270%5Ctimes10%5E3%20%3D%20kQ%5Cleft%5B-%5Cdfrac%7B1%7D%7Bx%7D-%5Cleft%28-%5Cdfrac%7B1%7D%7B0.1%5Ctext%7B%20m%7D%7D%5Cright%29%5Cright%5D)



The charge chould be moved to infinity
Answer:
The mass of the object is 5.045 lbm.
Explanation:
Given;
kinetic energy of the object, K.E = 1558.71 ft.lbf
velocity of the object, V = 141 ft/s
The kinetic energy of the object is calculated as;


Therefore, the mass of the object is 5.045 lbm.