The electric potential V(z) on the z-axis is : V = 
The magnitude of the electric field on the z axis is : E = kб 2
( 1 - [z / √(z² + a² ) ] )
<u>Given data :</u>
V(z) =2kQ / a²(v(a² + z²) ) -z
<h3>Determine the electric potential V(z) on the z axis and magnitude of the electric field</h3>
Considering a disk with radius R
Charge = dq
Also the distance from the edge to the point on the z-axis = √ [R² + z²].
The surface charge density of the disk ( б ) = dq / dA
Small element charge dq = б( 2πR ) dr
dV
----- ( 1 )
Integrating equation ( 1 ) over for full radius of a
∫dv = 
V = ![\pi k\alpha [ (a^2+z^2)^\frac{1}{2} -z ]](https://tex.z-dn.net/?f=%5Cpi%20k%5Calpha%20%5B%20%28a%5E2%2Bz%5E2%29%5E%5Cfrac%7B1%7D%7B2%7D%20-z%20%5D)
= ![\pi k (\frac{Q}{\pi \alpha ^2})[(a^2 +z^2)^{\frac{1}{2} } -z ]](https://tex.z-dn.net/?f=%5Cpi%20k%20%28%5Cfrac%7BQ%7D%7B%5Cpi%20%5Calpha%20%5E2%7D%29%5B%28a%5E2%20%2Bz%5E2%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%20%20-z%20%5D)
Therefore the electric potential V(z) = 
Also
The magnitude of the electric field on the z axis is : E = kб 2
( 1 - [z / √(z² + a² ) ] )
Hence we can conclude that the answers to your question are as listed above.
Learn more about electric potential : brainly.com/question/25923373
Answer:
54 km/hr
Explanation:
m/s to km/hr => 18/5
15 m/s to km/hr => 15 x 18/5 =>3 x 18 => 54km/hr
The water pressure on the first floor must be 455 PSI in order to push the water to the 13th floor at the given pressure.
The given parameters;
- <em>Pressure on the 13 th floor, P₁ = 35 PSI</em>
- <em>Distance between each floor, d = 10 ft</em>
The vertical pressure of the water is calculated as follows;

The vertical height of the first floor from the 13th floor = 130 ft
The vertical height of the 13 ft floor = 10 ft

Thus, the water pressure on the first floor must be 455 PSI in order to push the water to the 13th floor at the given pressure.
Learn more about vertical height and pressure here: brainly.com/question/15691554
As stated in the statement, we will apply energy conservation to solve this problem.
From this concept we know that the kinetic energy gained is equivalent to the potential energy lost and vice versa. Mathematically said equilibrium can be expressed as


Where,
m = mass
= initial and final velocity
g = Gravity
h = height
As the mass is tHe same and the final height is zero we have that the expression is now:






Yes. It means that the acceleration increases at a constant rate, for example 3 mph every second.