Answer:
The impulse exerted by one cart on the other has a magnitude of 4 N.s.
Explanation:
Given;
mass of the first cart, m₁ = 2 kg
initial speed of the first car, u₁ = 3 m/s
mass of the second cart, m₂ = 4 kg
initial speed of the second cart, u₂ = 0
Let the final speed of both carts = v, since they stick together after collision.
Apply the principle of conservation of momentum to determine v
m₁u₁ + m₂u₂ = v(m₁ + m₂)
2 x 3 + 0 = v(2 + 4)
6 = 6v
v = 1 m/s
Impulse is given by;
I = ft = mΔv = m(
The impulse exerted by the first cart on the second cart is given;
I = 2 (3 -1 )
I = 4 N.s
The impulse exerted by the second cart on the first cart is given;
I = 4(0-1)
I = - 4 N.s (equal in magnitude but opposite in direction to the impulse exerted by the first).
Therefore, the impulse exerted by one cart on the other has a magnitude of 4 N.s.
According to the law of conservation of momentum:

m1 = mass of first object
m2 = mass of second object
v1 = Velocity of the first object before the collision
v2 = Velocity of the second object before the collision
v'1 = Velocity of the first object after the collision
v'2 = Velocity of the second object after the collision
Now how do you solve for the velocity of the second car after the collision? First thing you do is get your given and fill in what you know in the equation and solve for what you do not know.
m1 = 125 kg v1 = 12m/s v'1 = -12.5m/s
m2 = 235kg v2 = -13m/s v'2 = ?




Transpose everything on the side of the unknown to isolate the unknown. Do not forget to do the opposite operation.




The velocity of the 2nd car after the collision is
0.03m/s.
For an inelastic collision where coefficient of restitution,e, is equal to 0, the momentum is conserved but not the kinetic energy. So, there is addition or elimination of kinetic energy.
On the otherhand, when e = 1, like for an elastic collision, kinetic energy and momentum is conserved. Thus, the system's kinetic energy is unchanged.
Answer:
See explanation below
Explanation:
The equation to use for this is the following:
dU = q + w
As the heat is being release, this value is negative, and same here happens with the work done, because it's in the surroundings.
Therefore the change in the energy would be:
dU = -2.59x10^4 - 6.46^4
dU = -9.05x10^4 kJ