You would be correct.
Because you have only JUST released the arrow, and how close he is to the target, it would have the same amount of energy when it strikes the target. Yes, the kinetic energy would be destroyed when you hit the target but not right away. And yes, the potential energy would also be destroyed once you release the arrow, but it goes straight back once it stops moving, aka when it hits the target, although it has only just stopped moving.
Hope this helps!
Answer:
Since steel contains iron (a magnetic metal), the magnets will attract the steel cans since aluminum is not magnetic. This is used to separate the steel cans from the aluminum cans so they can be recycled separately.
Answer:
Therefore % increase in velocity is 18.23 %
Explanation:
we use the equality of mass flow rate and the areas

The percentage increase in velocity is
Δ v% =
100%
=
.100%
=
. 100%
= Therefore % increase in velocity is 18.23 %
<span>It is used to establish and maintain a proton gradient.</span>
The amount of work the two tugboats completed on the supertanker W = 3.12 × 10^9 joules .
Work is a physics term used to describe the energy transfer that takes place when an object is moved over a distance by an external force, at least some . The component of the force acting along the path multiplied by the length of the path can be used to calculate work if the force is constant. Mathematically, this idea is expressed as W = fd, where W is the work and f is the force multiplied by d, the distance. Work is completed when the force is applied at an angle of with respect to the displacement. Performing work on a body involves moving it in its entirety from one location to another as well as other methods. However, the work is thought to be negative if the applied force is in opposition to the item's motion, indicating that energy is being pulled away from the object
Learn more about work here:
brainly.com/question/1374468
#SPJ4