Im pretty Sure its B Tuesday And Wensday
Democritus was the first to propose the idea of the atom. He said the atom was just this tiny, solid sphere. However, he used no scientific evidence to support his claim, so a guy named John Dalton did some experimenting and basically backed up Democritus' claim with evidence. Then, a guy named J.J. Thompson came along and said the atom was not solid and that is consisted of tiny negatively charged particles(electrons) and he came up with the Plum Pudding model which is just a tiny sphere with a punch of random scattered dots in it. After that, Ernest Rutherford did experiments and found that the tiny sphere is made up of mostly empty space with a tiny, dense, positively charged sphere inside of it, and the negatively charged particles just randomly float around it. Neils Bohr then said that the electrons take specific, circular, evenly spaced paths. Then, finally, we come to the Quantum Mechanical Model which is the one accepted today. This model basically vetos Bohr's idea and has a nucleus inside of an electron cloud, which is where the electrons are found.
Answer:
Mg2 + O2 → 2MgO
Explanation:
Hope this helps!! I got it right.
Answer:
a) First-order.
b) 0.013 min⁻¹
c) 53.3 min.
d) 0.0142M
Explanation:
Hello,
In this case, on the attached document, we can notice the corresponding plot for each possible order of reaction. Thus, we should remember that in zeroth-order we plot the concentration of the reactant (SO2Cl2 ) versus the time, in first-order the natural logarithm of the concentration of the reactant (SO2Cl2 ) versus the time and in second-order reactions the inverse of the concentration of the reactant (SO2Cl2 ) versus the time.
a) In such a way, we realize the best fit is exhibited by the first-order model which shows a straight line (R=1) which has a slope of -0.0013 and an intercept of -2.3025 (natural logarithm of 0.1 which corresponds to the initial concentration). Therefore, the reaction has a first-order kinetics.
b) Since the slope is -0.0013 (take two random values), the rate constant is 0.013 min⁻¹:

c) Half life for first-order kinetics is computed by:

d) Here, we compute the concentration via the integrated rate law once 1500 minutes have passed:

Best regards.