They held together by metallic bonds.
Hopefully this has helped! :)
answer:an arrangement of elements in columns, based on a set of properties that repeat from row to row
Explanation:
hope this helps love <3
Answer:
Explanation:
(a) Answer: Intermolecular forces
The reason for this answer is because the substance (paraffin wax) only changed it's state from solid to liquid and didn't undergo a breakage in it's covalent bond within it's carbon chain which would have produced another substance.
(b) Solid substances are generally more dense than there corresponding liquid substances because the more compact particles are (which occurs in solids), the more dense they become. They are thus more dense than liquids because liquids have there particles loosely packed and well spaced making them less dense than there corresponding solids. Hence, the solid paraffin wax was going to become less dense because it's particles moved from being tightly packed (as solids) to being loosely packed (as liquids). Density refers to mass per volume but can also be described as the level of compactness of a substance. Thus, since liquid is not as compact as solid, it can be said to be less dense than solids.
Answer:
maybe, but id rather do automotive stuff, thats my second option.
Explanation:
Answer:
Equilibrium shifts to the right
Explanation:
An exothermic reaction is one in which temperature is released to the environment. Hence, if the reaction vessel housing an exothermic reaction is touched after reaction completion, we will notice that the reaction vessel e.g beaker is hot.
To consider the equilibrium response to temperature changes, we need to consider if the reaction is exothermic or endothermic. In the case of this particular question, it has been established that the reaction is exothermic.
Heat is released to the surroundings as the reactants are at a higher energy level compared to the products. Hence, increasing the temperature will favor the formation of more reactants and as such, the equilibrium position will shift to the left to pave way for the formation of more reactants. Thus , more acetylene and hydrogen would be yielded