Is the combination of all forces acting on an object
<span>Groups are vertical, numbered 1 through 18, and have similar properties, so answer D. Most of the properties of groups are defined by the outermost electron in the shells of the elements. Horizontal delineations in the Periodic Table are known as periods.</span>
Since a pH of 3 is three numbers higher than a pH of 6, we can find the change in acidity by taking 10 to the third power. The solution with a pH of 3 is 1000 times more acidic than the solution with a pH of 6.
The answer would be 118.68 g.
Explanation for this is:4 moles of NH3 give 4 moles of NO2
so 1mole of NH3 will give 1 mole of NO2
43.9 grams of NH3 contains 2.58 moles
so 2.58 moles will be produced of NO2
which is 118.7 grams this the amount of oxygen that is used.
Answer : The rate constant at 785.0 K is, 
Explanation :
According to the Arrhenius equation,

or,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate constant at
= 
= rate constant at
= ?
= activation energy for the reaction = 262 kJ/mole = 262000 J/mole
R = gas constant = 8.314 J/mole.K
= initial temperature = 
= final temperature = 
Now put all the given values in this formula, we get:
![\log (\frac{K_2}{6.1\times 10^{-8}s^{-1}})=\frac{262000J/mole}{2.303\times 8.314J/mole.K}[\frac{1}{600.0K}-\frac{1}{785.0K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7B6.1%5Ctimes%2010%5E%7B-8%7Ds%5E%7B-1%7D%7D%29%3D%5Cfrac%7B262000J%2Fmole%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B600.0K%7D-%5Cfrac%7B1%7D%7B785.0K%7D%5D)

Therefore, the rate constant at 785.0 K is, 