The net amount of energy produced can be obtained from a table of enthalpy change of formation, available online.
The enthalpy change of formation indicate how much energy the 1 mole of the product (H2O) has relative to the elemental reactants (H2 and O2). In other words, the "lost" energy equals the heat/energy released.
For water (H2O), this value is -285.8 if the final product is a liquid under standard conditions, and -241.82 if the product is in gas form which contains some energy that could be further released. This means that if the final product (H2O) is in liquid form, energy released is 285.8 kJ/mol.
Since water is in liquid form under standard conditions, the first value (285.8 kJ/mol) is generally appropriate.
The final temperature, t₂ = 30.9 °C
<h3>Further explanation</h3>
Given
24.0 kJ of heat = 24,000 J
Mass of calorimeter = 1.3 kg = 1300 g
Cs = 3.41 J/g°C
t₁= 25.5 °C
Required
The final temperature, t₂
Solution
Q = m.Cs.Δt
Q out (combustion of compound) = Q in (calorimeter)
24,000 = 1300 x 3.41 x (t₂-25.5)
t₂ = 30.9 °C
Using the simulation to build a system with 5 bonds. The resulting structure is called the Trigonal bipyramidal structure. The two different sites in a trigonal bipyramid are labeled as A and B in the drawing to the right.
In this case, therefore, the bond angle A-C-B is 90 Degrees (right angle)
Answer:
Q = 143,921 J = 143.9 kJ.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the absorbed heat by considering this is a process involving sensible heat associated to the vaporization of water, which is isothermic and isobaric; and thus, the heat of vaporization of water, with a value of about 2259.36 J/g, is used as shown below:

Thus, we plug in the mass and the aforementioned heat of vaporization of water to obtain the following:

Regards!
Answer: I don’t know lol
Explanation: I am so sorry I thought this was easy