Aerobie. Frisbee. Discus. Javelin. I suppose an American football to some extent.
<span>Pull! Clay pigeons. Arrows. Wingsuit. Kites. Hang gliders. Sails. sailboat keels/dagger boards. Water skis. Ski jumping skis. Boomerang. </span>
<span>I'm excluding spheres and parachutes as bluff bodies even though aerodynamics often plays a big part in their motion.</span>
![\large{ \boxed{ \bf{ \color{red}{Universal \: law \: of \: gravitation}}}}](https://tex.z-dn.net/?f=%20%5Clarge%7B%20%5Cboxed%7B%20%5Cbf%7B%20%5Ccolor%7Bred%7D%7BUniversal%20%5C%3A%20law%20%5C%3A%20of%20%5C%3A%20gravitation%7D%7D%7D%7D)
Every object in the universe attracts every other object with a force which is proportional to the product of their masses and inversely proportional to the square of the distance between them. The forces along the line joining the centre of the two objects.
❍ Let us consider two masses m1 and m2 line at a separation distance d. Let the force of attraction between the two objects be F.
According to universal law of gravitation,
![\large{ \longrightarrow{ \rm{F \propto m_1 m_2}}}](https://tex.z-dn.net/?f=%20%5Clarge%7B%20%5Clongrightarrow%7B%20%5Crm%7BF%20%5Cpropto%20m_1%20m_2%7D%7D%7D)
Also,
![\large{ \longrightarrow{ \rm{ F \propto \dfrac{1}{ {d}^{2} } }}}](https://tex.z-dn.net/?f=%20%5Clarge%7B%20%5Clongrightarrow%7B%20%5Crm%7B%20F%20%5Cpropto%20%20%5Cdfrac%7B1%7D%7B%20%7Bd%7D%5E%7B2%7D%20%7D%20%7D%7D%7D)
Combining both, We will get
![\large{ \longrightarrow{ \rm{F \propto \dfrac{ m_1 m_2}{ {d}^{2}}}}}](https://tex.z-dn.net/?f=%20%5Clarge%7B%20%5Clongrightarrow%7B%20%5Crm%7BF%20%20%5Cpropto%20%20%5Cdfrac%7B%20m_1%20m_2%7D%7B%20%7Bd%7D%5E%7B2%7D%7D%7D%7D%7D%20)
Or, We can write it as,
![\large{ \longrightarrow{ \rm{F \propto \: G \dfrac{ m_1 m_2}{ {d}^{2} }}}}](https://tex.z-dn.net/?f=%20%5Clarge%7B%20%5Clongrightarrow%7B%20%5Crm%7BF%20%20%5Cpropto%20%20%5C%3A%20%20G%20%5Cdfrac%7B%20m_1%20m_2%7D%7B%20%7Bd%7D%5E%7B2%7D%20%7D%7D%7D%7D)
Where, G is the constant of proportionality and it is called 'Universal Gravitational constant'.
☯️ Hence, derived !!
<u>━━━━━━━━━━━━━━━━━━━━</u>
Answer:
Explanation:
If the work done on the cart is NET work
Then the work will result in an increase in kinetic energy
KE₀ + W = KE₁
½mv₀² + W = ½mv₁²
½(0.80)(0.61²) + 0.91 = ½(0.80)v₁²
v₁ = 1.626991...
v₁ = 1.6 m/s
Answer:
R = 5.28 103 km
Explanation:
The definition of density is
ρ = m / V
V = m /ρ
Where m is the mass and V the volume of the body
The volume of a sphere is
V = 4/3 π r³
Let's replace
4/3 π r³ = m / ρ
R =∛ ¾ m / ρ π
The mass of the planet is
M = 5.5 Me
R = ∛ ¾ 5.5 Me /ρ π
Let's reduce the density to SI units
ρ = 1.76 g / cm³ (1 kg / 10³ g) (10² cm / 1 m)³
ρ = 1.76 10³ kg / m³
Let's calculate
R = ∛ ¾ 5.5 5.97 10²⁴ / (1.76 10³ pi)
R = ∛ 0.14723 10²¹
R = 0.528 10⁷ m
R = 0.528 104 km
R = 5.28 103 km