Answer:
See description
Explanation:
This is an example where we need Tornicelli's law, which states that the horizontal speed of a fluid that starts falling from an orifice is the same speed that an object acquires from free-falling.

we are given:
![h_{cilinder} = 0.2 [m]\\h = 0.05 [m]\\d=0.15[m]](https://tex.z-dn.net/?f=h_%7Bcilinder%7D%20%3D%200.2%20%5Bm%5D%5C%5Ch%20%3D%200.05%20%5Bm%5D%5C%5Cd%3D0.15%5Bm%5D)
the horizontal velocity of the water at the start is:
![v = \sqrt{2(9.8)(0.05)}=0.989949 [m/s]=1[m/s]](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%7B2%289.8%29%280.05%29%7D%3D0.989949%20%5Bm%2Fs%5D%3D1%5Bm%2Fs%5D)
now we need to find the time for the water drops to fall d:
as the gravity is the only force interacting with the water we have:

replace for y = d
![0.15 = \frac{1}{2} g*t^2=>t=\sqrt{\frac{2*0.15}{9.8}}=0.1749[s]](https://tex.z-dn.net/?f=0.15%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20g%2At%5E2%3D%3Et%3D%5Csqrt%7B%5Cfrac%7B2%2A0.15%7D%7B9.8%7D%7D%3D0.1749%5Bs%5D%20)
now that we have t we notice that there are no horizontal forces interacting with the water, so the horizontal position is given by:

Finally, we replace v and t:
![x(2.45) = 1*0.1749 = 0.1749 [m]=17.49[cm]](https://tex.z-dn.net/?f=x%282.45%29%20%3D%201%2A0.1749%20%3D%200.1749%20%5Bm%5D%3D17.49%5Bcm%5D)
A deviated nasal septum occurs when the partition between the two nostrils is pushed to one side, leading to a partially obstructed airway in one nostril.
32f. That's because the force is directly proportional to the product of the masses and inversely proportional to the square of the distance. So you get 2•(1/1/4)^2=2•16=32
Answer:
As g=0 at the centre of earth the time period becomes infinite as T=2pi/underoot g. At center of earth, r = 0 & hence g = 0. Time period of a simple pendulum is T = 2π sqrt (1/g).
Explanation:
Answer:
The answer is 7.8 kJ / mol.
Explanation:
Energy = (number of methyl group) (Gauche interactions)(3.8kJ/mol per interaction)
= (2)(2)(3.8 kJ / mol)
= 15.2 kJ / mol.
The energy = (number of methyl group) - ( energy of gauche interactions)
= (23 kJ/mol) - 15.2 kJ/mol
= 7.8 kJ / mol.