Answer:25.61 m/s
Explanation:
Given
truck is moving eastbound with a velocity of 16 m/s
Velocity of truck 
SUV is moving south with a velocity of 20 m/s
Velocity of SUV in vector form 
Velocity of truck relative to the SUV


Magnitude of relative velocity is

Answer:
So as two objects are separated from each other, the force of gravitational attraction between them also decreases. If the separation distance between two objects is doubled (increased by a factor of 2), then the force of gravitational attraction is decreased by a factor of 4 (2 raised to the second power).
Explanation:
hope his helps
Carbon and hydrogen are also examples of elements
As the speed of wave decreases, the wavelength of the wave decreases.
<h3>Refraction</h3>
We know that as a wave travels from one medium to another its speed decreases depending on if the first medium is less dense than the second medium or increases depending on if the first medium is more dense than the second medium. This is known as refraction
Now, we know that the speed of a wave v = fλ where
- f = frequency and
- λ = wavelength. Since f is constant, v ∝ λ.
The ratio of the speed in medium one to speed in medium two is called the refractive index of medium 1 to 2.
<h3>Explaining the diagram</h3>
From the diagram, we see that the wavelength in medium 1 is longer than that in medium 2. Since wavelength and speed are proportional, so the speed in medium 1 is also greater than the speed in medium 2.
So, As the speed of wave decreases, the wavelength of the wave decreases.
Learn more about refraction here:
brainly.com/question/25758484
Answer:
(D) 4
Explanation:
The percentage error in each of the contributors to the calculation is 1%. The maximum error in the calculation is approximately the sum of the errors of each contributor, multiplied by the number of times it is a factor in the calculation.
density = mass/volume
density = mass/(π(radius^2)(length))
So, mass and length are each a factor once, and radius is a factor twice. Then the total percentage error is approximately 1% +1% +2×1% = 4%.
_____
If you look at the maximum and minimum density, you find they are ...
{0.0611718, 0.0662668} g/(mm²·cm)
The ratio of the maximum value to the mean of these values is about 1.03998. So, the maximum is 3.998% higher than the "nominal" density.
The error is about 4%.
_____
<em>Additional comment</em>
If you work through the details of the math, you will see that the above-described sum of error percentages is <em>just an approximation</em>. If you need a more exact error estimate, it is best to work with the ranges of the numbers involved, and/or their distributions.
Using numbers with uniformly distributed errors will give different results than with normally distributed errors. When such distributions are involved, you need to carefully define what you mean by a maximum error. (By definition, normal distributions extend to infinity in both directions.) While the central limit theorem tends to apply, the actual shape of the error distribution may not be precisely normal.