The car acceleration is 22.2 repeating meters per second squared
Answer:
(d) III only
Explanation:
We have to observe the motion of the bag with respect to taxi , considering taxi as stationary or inertial frame . Since bag is not moving with respect to taxi , the inertial frame that means , net force on it is zero .So option i and ii are ruled out .
Now how to explain motion of the bag ie why it is stationary ie what are the balancing force acting on it. We know that on a body on circular path , a force called centripetal force is acting on it . So that force must be acting on it . The balancing force is the frictional force which is keeping it stationary with respect to taxi . Hence the third option is correct.
Answer:
3.5 N
Explanation:
Let the 0-cm end be the moment point. We know that for the system to be balanced, the total moment about this point must be 0. Let's calculate the moment at each point, in order from 0 to 100cm
- Tension of the string attached at the 0cm end is 0 as moment arm is 0
- 2 N weight suspended from the 10 cm position: 2*10 = 20 Ncm clockwise
- 2 N weight suspended from the 50 cm position: 2*50 = 100 Ncm clockwise
- 1 N stick weight at its center of mass, which is 50 cm position, since the stick is uniform: 1*50 = 50 Ncm clockwise
- 3 N weight suspended from the 60 cm position: 3*60 = 180 Ncm clockwise
- Tension T (N) of the string attached at the 100-cm end: T*100 = 100T Ncm counter-clockwise.
Total Clockwise moment = 20 + 100 + 50 + 180 = 350Ncm
Total counter-clockwise moment = 100T
For this to balance, 100 T = 350
so T = 350 / 100 = 3.5 N
Answer:
Sure, the frequency is 500Hz
Explanation:
Sure, the frequency can be calculated. The needed information which is the speed and wavelength of the wave are known.
Wavelength is the distance between two successive crest and trough of a wave.
Using the relationship
V = fλ
V is the speed of wave
F is the frequency
λ is the wavelength
f = v/λ
Given v = 100m/s, λ = 10cm/0.5 = 20cm
20cm = 0.2m
f = 100/0.2
f = 500Hertz
Answer:
[1, 6, -2]
Explanation:
Given the following :
Initial Position of spaceship : [3 2 4] km
Velocity of spaceship : [-1 2 - 3] km/hr
Location of ship after two hours have passed :
Distance moved by spaceship :
Velocity × time
[-1 2 -3] × 2 = [-2 4 -6]
Location of ship after two hours :
Initial position + distance moved
[3 2 4] + [-2 4 -6] = [3 + (-2)], [2 + 4], [4 + (-6)]
= [3-2, 2+4, 4-6] = [1, 6, -2]