1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
taurus [48]
3 years ago
8

a rocket initially at rest on the ground lifts off vertically with a constant acceleration of 2.0 x 10^1 meters per second^2. Ho

w long will it take the rocket to reach an altitude of 9.0 x 10^3 meters ?
Physics
1 answer:
xenn [34]3 years ago
7 0

Here's the formula for the distance covered by an accelerating body in some amount of time ' T '. This formula is incredibly simple but incredibly useful. It pops up so often in Physics that you really should memorize it:

D = 1/2 a T²

Distance = (1/2)·(acceleration)·(time²)

This question gives us the acceleration and the distance, and we want to find the time.

(9,000 m) = (1/2) (20 m/s²) (time²)

(9,000 m) = (10 m/s²) (time²)

Divide each side by 10 m/s²:

(9,000 m) / (10 m/s²) = (time²)

900 s² = time²

Square root each side:

<em>T = 30 seconds</em>

You might be interested in
Why is the curve between 1950 and 1980 relatively flat and centered around zero degrees difference from the baseline? (Hint: how
zimovet [89]

Look at the title of the graph, in small print under it.

Each point is "compared to 1950-1980 baseline". So the set of data for those years is being compared to itself. No wonder it matches up pretty close !

3 0
4 years ago
PLEASE ANSWER ASAP BEFORE MY TEACHER AND MY MOM KILLES ME PLEASE ASAP
Anastaziya [24]

Answer:

As you know, the denser objects have more weight per unit of volume, this will mean that the force that pulls down these objects is a bit larger.

This will mean that the denser objects will always go to the bottom.

This clearly implies that the red liquid, the one with one of the smaller densities, can not be at the bottom.

There are some cases where a liquid with a small density may become a lot denser as the temperature or pressure changes, and in a case like that, we could see the red liquid at the bottom, but for this case, there is no mention of changes in the temperature nor in the pressure, so this can be discarded.

The only thing that makes sense is that the red part at the bottom is the base of the tube, and has nothing to do with the red liquid.

6 0
3 years ago
3) A dock worker pushes a 72 kg crate up a 2.0 m high,
Vlad [161]

Work done on the crate is 1411.2 J

Explanation:

Work done is defined as the product of force and the distance moved by the object. The unit of work done is in joules and denoted by the symbol J.

                                     Work done = F * d

where F represents the force and d represents the distance moved by the object.

mass = 72 kg , distance moved by the object is given by 2.0 m

Force F = mass * gravity = 72 * 9.8

             = 705.6 N =706 N.

Work done = 706 * 2.0 = 1412 J.

                   

7 0
3 years ago
What property of equality can be used to solve the equation. n – 14 = 25
Inga [223]

Do 25-14 and you will get your answer

7 0
3 years ago
A rod of length Lo moves iwth a speed v along the horizontal direction. The rod makes an angle of (θ)0 with respect to the x' ax
Colt1911 [192]

Answer:

From the question we are told that

  The length of the rod is  L_o

    The  speed is  v  

     The angle made by the rod is  \theta

     

Generally the x-component of the rod's length is  

     L_x =  L_o cos (\theta )

Generally the length of the rod along the x-axis  as seen by the observer, is mathematically defined by the theory of  relativity as

       L_xo  =  L_x  \sqrt{1  - \frac{v^2}{c^2} }

=>     L_xo  =  [L_o cos (\theta )]  \sqrt{1  - \frac{v^2}{c^2} }

Generally the y-component of the rods length  is mathematically represented as

      L_y  =  L_o  sin (\theta)

Generally the length of the rod along the y-axis  as seen by the observer, is   also equivalent to the actual  length of the rod along the y-axis i.e L_y

    Generally the resultant length of the rod as seen by the observer is mathematically represented as

     L_r  =  \sqrt{ L_{xo} ^2 + L_y^2}

=>  L_r  = \sqrt{[ (L_o cos(\theta) [\sqrt{1 - \frac{v^2}{c^2} }\ \ ]^2+ L_o sin(\theta )^2)}

=>  L_r= \sqrt{ (L_o cos(\theta)^2 * [ \sqrt{1 - \frac{v^2}{c^2} } ]^2 + (L_o sin(\theta))^2}

=>   L_r  = \sqrt{(L_o cos(\theta) ^2 [1 - \frac{v^2}{c^2} ] +(L_o sin(\theta))^2}

=> L_r =  \sqrt{L_o^2 * cos^2(\theta)  [1 - \frac{v^2 }{c^2} ]+ L_o^2 * sin(\theta)^2}

=> L_r  =  \sqrt{ [cos^2\theta +sin^2\theta ]- \frac{v^2 }{c^2}cos^2 \theta }

=> L_o \sqrt{1 - \frac{v^2}{c^2 } cos^2(\theta ) }

Hence the length of the rod as measured by a stationary observer is

       L_r = L_o \sqrt{1 - \frac{v^2}{c^2 } cos^2(\theta ) }

   Generally the angle made is mathematically represented

tan(\theta) =  \frac{L_y}{L_x}

=>  tan {\theta } =  \frac{L_o sin(\theta )}{ (L_o cos(\theta ))\sqrt{ 1 -\frac{v^2}{c^2} } }

=> tan(\theta ) =  \frac{tan\theta}{\sqrt{1 - \frac{v^2}{c^2} } }

Explanation:

     

     

       

7 0
3 years ago
Other questions:
  • I need this asap please
    14·1 answer
  • A gas is in a sealed container.Part ABy what factor does the gas temperature change if the volume is doubled and the pressure is
    14·1 answer
  • Rocks A and B are located at the same height on top of a hill. The mass of rock A is twice the mass of rock B. How does the pote
    8·1 answer
  • How many electrons do hydrogeyn have?
    11·1 answer
  • A particle (m = 4.3 × 10^-28 kg) starting from rest, experiences an acceleration of 2.4 × 10^7 m/s^2 for 5.0 s. What is its de B
    15·1 answer
  • A has the magnitude 14.4 m and is angled 51.6° counterclockwise from the positive direction of the x axis of an xy coordinate sy
    6·1 answer
  • Which experiment best shows water’s ability to act as a solvent? raise the temperature of water and record its boiling point. fr
    12·2 answers
  • Write the following as powers of ten with one figure before the decimal point:
    7·1 answer
  • A galvanic cell is formed when two metals are immersed in solu- tions differing in concentration 1 when two different metals are
    7·1 answer
  • A descent vehicle landing on the moon has
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!