Answer:
F = 20.4 i ^
Explanation:
This exercise can be solved using the ratio of momentum and amount of movement.
I = F t = Dp
Since force and amount of movement are vector quantities, each axis must be worked separately.
X axis
Let's look for speed
cos 45 = vₓ / v
vₓ = v cos 45
vₓ = 8 cos 45
vₓ = 5,657 m / s
We write the moment
Before the crash p₀ = m vₓ
After the shock
= -m vₓ
The variation of the moment Δp = mvₓ - (-mvₓ) = 2 m vₓ
The impulse on the x axis Fₓ t = Δp
Fₓ = 2 m vₓ / t
Fx = 2 0.450 5.657 / 0.250
Fx = 20.4 N
We perform the same calculation on the y axis
sin 45 = vy / v
vy = v sin 45
vy = 8 sin 45
vy = 5,657 m / s
We calculate the initial momentum po = m 
Final moment
= m
Variations moment Δp = m
- m
= 0
Force in the Y-axis
= 0
Therefore the total force is
F = fx i ^ + Fyj ^
F = Fx i ^
F = 20.4 i ^
Answer:
32 seconds
Explanation:
m1 = 80 kg
m2 = 10 kg
v2 = 5m/s
According to the property of conservation of momentum, assuming that both you and the bag are stationary before the safety rope comes lose:

Since the space station is 20 meters away, the time taken to reach it is given by:

It takes you 32 seconds to reach the station.
Answer:
A, C and D
Explanation:
The impulse is defined as the product between the force (F) and the time of the collision (t):

Let's apply the formula to calculate the impulse for each situation:
A) 
B) 
C) 
D) 
We see that the situations in which the impulse is equal to 10 units are:
A, C and D
Answer:
The speed is 33.5 m/s.
Explanation:
Given that,
Mass = 0.064 kg
Wavelength 
We need to calculate the speed
Using formula of he de Broglie wavelength


Where, h = Planck constant
m = mass
= wavelength
Put the value into the formula


Hence, The speed is 33.5 m/s.