Answer:
2.06 m/s
Explanation:
From the law of conservation of linear momentum, the sum of momentum before and after collision are equal. Considering this case where we have frictionless surface, no momentum is lost in the process.
Momentum before collision
Momentum is given by p=mv where m and v represent mass. The initial sum of momentum will be 9v+(27*0.5)=9v+13.5
Momentum after collision
The momentum after collision will be given by (9+27)*0.9=32.4
Relating the two then 9v+13.5=32.4
9v=18.5
V=2.055555555555555555555555555555555555555 m/s
Rounded off, v is approximately 2.06 m/s
Answer: ??? D? dont quote me on it tho <3
Explanation:
This question involves the concepts of projectile motion and launch speed.
(a) The initial launch speed of the projectile is "100 m/s".
(b) The launch angle of the projectile is "53.13°".
<h3>(a) LAUNCH SPEED</h3>
A projectile motion is a motion that takes place on both x and y axes, simultaneously. In this motion the initial launch speed is given by the following formula:

where,
= initial launch speed = ?
= horizontal component of initial launch speed = 60 m/s
= vertical component of initial launch speed = 80 m/s
Therefore,

<h3>(b) LAUNCH ANGLE</h3>
Launch angle is given by th following formula:

Learn more about the projectile motion here:
brainly.com/question/11049671
Well, for one thing, it could depend on which fruit is dropped first. You haven't mentioned that.
If they're both dropped at exactly the same time, then the melon at 32m hits the ground first.
It has nothing to do with their masses or weights. It's only a matter of which one has farther to fall. Even if it were a school-bus at 96m instead of a pomegranate, anything dropped from less than 96m would reach the ground in less time than the school-bus.