(a) 10 GHz is the frequency of microwave radiation.
(b) 0.167 ms is required by the microwave to travel between two mountains.
Answer:
Explanation:
(a). 1 MHz is the frequency of microwave radiation.
(b) 0.167 ms is required by the microwave to travel between two mountains.
Answer:
Explanation:
a. Frequency is the measure of number of times a same thing will be repeated in a given time interval for a given time. And wavelength is the measure of distance between two successive crests or troughs. So wavelength and frequency are inversely proportional to each other. And velocity of light is the proportionality constant.
So frequency of microwave radiation = Speed of light/Wavelength of radiation
Frequency = 
Frequency = 
So 10 GHz is the frequency of microwave radiation.
b). As microwave is a part of light waves, so it will be experiencing the speed of light.
As the speed is 3*
m/s and the distance between the two mountains is given as 50 km, then time can be calculated as
Time = Distance/Velocity
Time = 
So time = 0.167 ms.
Thus, 0.167 ms is required by the microwave to travel between two mountains.
Answer:1265 N
Explanation:
Given
acceleration of motorcycle 
Velocity 
Air friction and Friction
mass of the motorcycle with rider
Applying Forces on motorcycle




Inspect the glassware for cracks or chips prior to beginning the lab.
<span>Make the surfaces smoother. Rough surfaces produce more friction and smooth surfaces reduce friction
Lubrication is another way to make a surface smoother
Make the object more streamlined
Reduce the forces acting on the surfaces
<span>Reduce the contact between the surfaces.</span></span>
Answer:

Explanation:
For the simple pendulum problem we need to remember that:
,
where
is the angular position, t is time, g is the gravity, and L is the length of the pendulum. We also need to remember that there is a relationship between the angular frequency and the length of the pendulum:
,
where
is the angular frequency.
There is also an equation that relates the oscillation period and the angular frequeny:
,
where T is the oscillation period. Now, we can easily solve for L:
