Answer:
The Internal energy of the gas did not change
Explanation:
In this situation the Internal energy of the gas did not change and this is because according the the first law of thermodynamics
Δ U = Q - W ------ ( 1 )
Δ U = change in internal energy
Q = heat added
W = work done
since Q = W. the value of ΔU will be = zero i.e. No change
I think that the answer to that is true hope that helps
Explanation:
If the center of the load is directly above the vertebrae, there is no torque in the system. This is a good thing so that the vertebrae are not put out of alignment over time. (Of course, this still doesn't prevent compression of the vertebrae over time, which is a possibility.)
The height of the ball above the ground is 38.45 m
First we will calculate the velocity of the ball when it touch the ground by using first equation of motion
v=u+gt
v=0+9.81×2.8
v=27.468 m/s
now the height of the ground can be calculated by the formula
v=√2gh
27.468=√2×9.81×h
h=38.45 m
Density = (mass) divided by (volume)
We know the mass (2.5 g). We need to find the volume.
The penny is a very short cylinder.
The volume of a cylinder is (π · radius² · height).
The penny's radius is 1/2 of its diameter = 9.775 mm.
The 'height' of the cylinder is the penny's thickness = 1.55 mm.
Volume = (π) (9.775 mm)² (1.55 mm)
= (π) (95.55 mm²) (1.55 mm)
= (π) (148.1 mm³)
= 465.3 mm³
We know the volume now. So we could state the density of the penny,
but nobody will understand what we have. Here it is:
mass/volume = 2.5 g / 465.3 mm³ = 0.0054 g/mm³ .
Nobody every talks about density in units of ' gram/(millimeter)³ ' .
It's always ' gram / (centimeter)³ '.
So we have to convert our number for the volume.
(0.0054 g/mm³) x (10 mm / cm)³
= (0.0054 x 1,000) g/cm³
= 5.37 g/cm³ .
This isn't actually very close to what the US mint says for the density
of a penny, but it's in a much better ball park than 0.0054 was.