Sum of all forces = mass * acceleration
Ft= tension force
Fw= force of gravity (Fw= mass* acceleration of gravity which is 9.8 this only applies to force of gravity)
Ft- Fw = 0 (there is no acceleration)
Ft = Fw
Ft= m*g
Ft= 0.250kg*9.8m/s
Ft= 2.45N
Answer:
-The speed of sound at 33°C is 362.8 m/s.
-The wavelength at a frequency at 5 kHz is 0.07256 m .
Explanation:
let v = 343 m/s be the speed of sound.
let T be the temperature.
then the speed of sound V, at 33°C is given by:
V = v + 0.6×T
= 343 + 0.6×33
= 362.8 m/s
Therefore, the speed of sound at 33°C is 362.8 m/s.
the wavelength at a frequency of f = 5kHz = 5000 Hz is given by:
λ = V/f
= (362.8)/(5000)
= 0.07256 m
Therefore, the wavelength at a frequency at 5 kHz is 0.07256 m .
D or b you chose because it can go any way
The exact magnification of the objects is calculated by dividing the cinema. We calculate it by diving the erect image size by the object size. From the given above, we find the exact magnification by dividing 5.0 cm by 1.0 cm. Thus, the answer would be 5.
An ant can have more momentum than an elephant when the elephant is standing still.
Answer: A
Explanation
The momentum is the quantification of the movement done by an object.
It is found to be dependent on the mass of the object and the velocity with which it is moving.
In the present case, the ant has negligible mass compared to elephant so the momentum can be more for ant only when the velocity with which the elephant is moving tends to be zero.
As the velocity of elephant will be zero, the momentum of elephant will be zero so in this criteria, the moving ant will be having more momentum compared to elephant with zero velocity.
So an elephant with zero velocity means the elephant is standing still.
Thus, the condition in which the ant will be having more momentum compared to elephant is when the elephant stands still.