Answer:
1.28 m
Explanation:
As shown in the diagram attached,
According to the principle of moment,
For a body at equilibrium,
Sum of clockwise moment = sum of anticlockwise moment.
Taking moment about the pivot,
W₁(1.6)+W(0.133) = W₂(x)............... Equation 1
Where W₁ = Weight of the first child, Wₓ = Weight of the seesaw, W₂ = weight of the second child, x = distance of the second child from the pivot.
But,
W = mg
Where g = 9.8 m/s², m = mass of the body
Therefore,
W₁ = 26×9.8 = 254.8 N,
Wₓ = 18×9.8 = 176.4 N
W₂ = 34.4×9.8 = 337.12 N
Substitute these values into equation 1
(254.8×1.6)+(176.4×0.133) = 337.12(x)
407.68+23.4612 = 337.12x
337.12x = 431.1412
x = 431.1412/337.12
x = 1.2789
x ≈ 1.28 m
Answer:
W = ½ m v²
Explanation:
In this exercise we must solve it in parts, in a first part we use the conservation of the moment to find the speed after the separation
We define the system formed by the two parts of the rocket, therefore the forces during internal separation and the moment are conserved
initial instant. before separation
p₀ = m v
final attempt. after separation
= m /2 0 + m /2 v_{f}
p₀ = p_{f}
m v = m /2 
v_{f}= 2 v
this is the speed of the second part of the ship
now we can use the relation of work and energy, which establishes that the work is initial to the variation of the kinetic energy of the body
initial energy
K₀ = ½ m v²
final energy
= ½ m/2 0 + ½ m/2 v_{f}²
K_{f} = ¼ m (2v)²
K_{f} = m v²
the expression for work is
W = ΔK = K_{f} - K₀
W = m v² - ½ m v²
W = ½ m v²
The average speed is the distance per time ratio. velocity is the rate at which the position changes
Answer: v = 0.6 m/s
Explanation: <u>Momentum</u> <u>Conservation</u> <u>Principle</u> states that for a collision between two objects in an isolated system, the total momentum of the objects before the collision is equal to the total momentum of the objects after the collision.
Momentum is calculated as Q = m.v
For the piñata problem:


Before the collision, the piñata is not moving, so
.
After the collision, the stick stops, so
.
Rearraging, we have:


Substituting:

0.6
Immediately after being cracked by the stick, the piñata has a swing speed of 0.6 m/s.