1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
notka56 [123]
3 years ago
6

A 8.34 × 103-kg lunar landing craft is about to touch down on the surface of the moon, where the acceleration due to gravity is

1.60 m/s2. At an altitude of 162 m the craft's downward velocity is 18.2 m/s. To slow down the craft, a retrorocket is firing to provide an upward thrust. Assuming the descent is vertical, find the magnitude of the thrust needed to reduce the velocity to zero at the instant when the craft touches the lunar surface.
Physics
1 answer:
Mnenie [13.5K]3 years ago
3 0

Answer:

21870.3156 N

Explanation:

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

g = Acceleration due to gravity = 1.6 m/s²

Equation of motion

v^2-u^2=2as\\\Rightarrow a=\frac{v^2-u^2}{2s}\\\Rightarrow a=\frac{0^2-18.2^2}{2\times 162}\\\Rightarrow a=-1.02234\ m/s^2

The acceleration of the craft should be 1.02234 m/s²

F=ma\\\Rightarrow F=8.34\times 10^3\times 1.02234\\\Rightarrow F=8526.3156\ N

Weight of the craft

W=mg\\\Rightarrow W=8.34\times 10^3\times 1.6\\\Rightarrow W=13344\ N

Thrust

F_t=F+W\\\Rightarrow F_t=8526.3156+13344\\\Rightarrow F_t=21870.3156\ N

The thrust needed to reduce the velocity to zero at the instant when the craft touches the lunar surface is 21870.3156 N

You might be interested in
5. A massless string passes over a frictionless pulley and carries
devlian [24]

Answer:

2m₁m₃g / (m₁ + m₂ + m₃)

Explanation:

I assume the figure is the one included in my answer.

Draw a free body diagram for each mass.

m₁ has a force T₁ up and m₁g down.

m₂ has a force T₁ up, T₂ down, and m₂g down.

m₃ has a force T₂ up and m₃g down.

Assume that m₁ accelerates up and m₂ and m₃ accelerate down.

Sum of the forces on m₁:

∑F = ma

T₁ − m₁g = m₁a

T₁ = m₁g + m₁a

Sum of the forces on m₂:

∑F = ma

T₁ − T₂ − m₂g = m₂(-a)

T₁ − T₂ − m₂g = -m₂a

(m₁g + m₁a) − T₂ − m₂g = -m₂a

m₁g + m₁a + m₂a − m₂g = T₂

(m₁ − m₂)g + (m₁ + m₂)a = T₂

Sum of the forces on m₃:

∑F = ma

T₂ − m₃g = m₃(-a)

T₂ − m₃g = -m₃a

a = g − (T₂ / m₃)

Substitute:

(m₁ − m₂)g + (m₁ + m₂) (g − (T₂ / m₃)) = T₂

(m₁ − m₂)g + (m₁ + m₂)g − ((m₁ + m₂) / m₃) T₂ = T₂

(m₁ − m₂)g + (m₁ + m₂)g = ((m₁ + m₂ + m₃) / m₃) T₂

m₁g − m₂g + m₁g + m₂g = ((m₁ + m₂ + m₃) / m₃) T₂

2m₁g = ((m₁ + m₂ + m₃) / m₃) T₂

T₂ = 2m₁m₃g / (m₁ + m₂ + m₃)

8 0
3 years ago
A negatively charged rubber rod can pick up small, neutrally charged pieces of paper by a process called
Ronch [10]
The answer would be intoduction hope this really helped
4 0
3 years ago
A 0.060 kg ball hits the ground with a speed of –32 m/s. The ball is in contact with the ground for 45 milliseconds and the grou
SCORPION-xisa [38]

Answer:

imma try and get it wrong

3 0
2 years ago
Direct tension indicators are sometimes used instead of torque wrenches to ensure that a bolt has a prescribed tension when used
natali 33 [55]

Complete Question

The complete question is shown on the uploaded image

Answer:

The tension on the shank is  T =8391.6 N

Explanation:

From the question we are told that

       The strain on the strain on the head is \Delta l = 0.1 mm/mm = \frac{0.1}{1000} = 0.1 *10^{-3} m/m

         The contact area is  A = 2.8 mm^2 = 2.8* (\frac{1}{1000} )^2 = 2.8*10^{-6} m^2  

Looking at the first diagram

           At  600 MPa of stress

               The strain is  0.3mm/mm

          At   450 MPa of stress

                 The strain is   0.0015 mm/mm

 To find the stress at  \Delta l we use the interpolation method

            \frac{\sigma_{\Delta l} -  \sigma_{0.0015} }{ \sigma _ {0.3} - \sigma_{0.0015} } = \frac{e_{\Delta l }  - e_{0.0015}}{e_{0.3} - e_{ 0.0015}}

Substituting values

              \frac{\sigma _{\Delta l} - 450}{600 - 450} = \frac{0.1 -0.0015}{0.3 - 0.0015}

            \sigma _{\Delta l} -450 = 49.50

             \sigma _{\Delta l} = 499.50 MPa

Generally the force on each head is mathematically represented as

              F = \sigma_{\Delta l} * A

Substituting values

             F = 499.50*10^{6} * 2.8*10^{-6}

                =1398.6N

Now the tension on the bolt shank is as a result of the force on the 6 head which is mathematically evaluated as

              T = 6 * F

                  = 6* 1398.6

              T =8391.6 N

                 

     

6 0
3 years ago
What is the rarefaction of a longitudinal
Softa [21]
The answer Is B! Good luck
8 0
2 years ago
Other questions:
  • To determine the mechanical advantage of a wedge, you divide the length of the slope by the __________________.
    7·2 answers
  • A policeman investigating an accident measures the skid marks left by a car on the horizontal road. He determines that the dista
    6·1 answer
  • How do I figure out if the acceleration is negative, positive or zero ?
    13·1 answer
  • Vaccine ASAP don't got much time
    8·2 answers
  • Everyone i need help so much
    11·2 answers
  • A bat at rest sends out ultrasonic sound waves at 46.2 kHz and receives them returned from an object moving directly away from i
    6·1 answer
  • 1. When you talk into your paper cup telephone, the person on the other end can feel the bottom
    11·1 answer
  • What landforms are found on the Moon? (Select all that apply.)
    13·1 answer
  • What are your controls?
    10·1 answer
  • The pressure at the bottom of a jug filled with water does NOT depend on the
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!