Answer:
2m₁m₃g / (m₁ + m₂ + m₃)
Explanation:
I assume the figure is the one included in my answer.
Draw a free body diagram for each mass.
m₁ has a force T₁ up and m₁g down.
m₂ has a force T₁ up, T₂ down, and m₂g down.
m₃ has a force T₂ up and m₃g down.
Assume that m₁ accelerates up and m₂ and m₃ accelerate down.
Sum of the forces on m₁:
∑F = ma
T₁ − m₁g = m₁a
T₁ = m₁g + m₁a
Sum of the forces on m₂:
∑F = ma
T₁ − T₂ − m₂g = m₂(-a)
T₁ − T₂ − m₂g = -m₂a
(m₁g + m₁a) − T₂ − m₂g = -m₂a
m₁g + m₁a + m₂a − m₂g = T₂
(m₁ − m₂)g + (m₁ + m₂)a = T₂
Sum of the forces on m₃:
∑F = ma
T₂ − m₃g = m₃(-a)
T₂ − m₃g = -m₃a
a = g − (T₂ / m₃)
Substitute:
(m₁ − m₂)g + (m₁ + m₂) (g − (T₂ / m₃)) = T₂
(m₁ − m₂)g + (m₁ + m₂)g − ((m₁ + m₂) / m₃) T₂ = T₂
(m₁ − m₂)g + (m₁ + m₂)g = ((m₁ + m₂ + m₃) / m₃) T₂
m₁g − m₂g + m₁g + m₂g = ((m₁ + m₂ + m₃) / m₃) T₂
2m₁g = ((m₁ + m₂ + m₃) / m₃) T₂
T₂ = 2m₁m₃g / (m₁ + m₂ + m₃)
The answer would be intoduction hope this really helped
Complete Question
The complete question is shown on the uploaded image
Answer:
The tension on the shank is 
Explanation:
From the question we are told that
The strain on the strain on the head is 
The contact area is
Looking at the first diagram
At 600 MPa of stress
The strain is 
At 450 MPa of stress
The strain is 
To find the stress at
we use the interpolation method

Substituting values



Generally the force on each head is mathematically represented as

Substituting values


Now the tension on the bolt shank is as a result of the force on the 6 head which is mathematically evaluated as



The answer Is B! Good luck