<span>2.56 sec (t=1/0.39)
f=3.9/10</span>

Actually Welcome to the Concept of the Kinematics.
so here we get as,
V^2 = U^2 + 2as
so here, a = -0.2 m/s^2
(0.1)^2 = (0.3)^2 + (-0.2)(s)
=> 0.01 = 0.09 - 0.2s
=> 0.2s = 0.08
=> s = 0.08/0.2
=> s = 0.4 m
The correct answer to the question is : Transverse wave.
EXPLANATION :
Before going to answer this question, first we have to understand the longitudinal and transverse wave.
LONGITUDINAL WAVE : A longitudinal wave is a mechanical wave in which the direction of vibration of particles is parallel to the direction of wave propagation. It moves in the form of compression and rarefaction.
For instance, sound wave.
TRANSVERSE WAVE : A transverse wave is a mechanical wave in which the direction of vibration of particles is perpendicular to the direction of wave propagation. It moves in the form of crests and troughs.
For instance, the wave created in a pond when a stone is dropped into it.
Hence, the correct answer of this question is transverse wave.
Answer: vf1/vf2= 1/ sqrt(2)
Explanation :on the moon no drag force so we have only the force of gravity. aceleration is g(moon)= 1.62m/s2.the rest is basic kinematics
if the rock travels H to the bottom we can calculate velocity:
vo=0m/s (drops the rock) , yo=0
vf*vf= vo*vo+2g(y-yo)
when the rock is halfway y = H/2 so:
vf1*vf1=2*g*H/2 so vf1 = sqrt(gH)
when the rock reach the bottom y=H so:
vf2*vf2=2*g*H so vf2 = sqrt(2gH)
so vf1/vf2= 1/ sqrt(2)
good luck from colombia
Answer:
Elastic Potential Energy
Explanation:
Elastic Potential Energy (“Spring Energy”) is the form of energy an object has when it is stretched, compressed, twisted, bent, or otherwise has its shape changed as long as the object resists and will try to return to its original state.