I believe the answer would be C.
The focal length would likely decrease as the refractive index and the increase when the curvature radius of the lens increases. The decrease in focal length happens since a higher index of refraction would signify that the rays of the sun striking to an object would tend to bend more.
Answer:
The impulse exerted by one cart on the other has a magnitude of 4 N.s.
Explanation:
Given;
mass of the first cart, m₁ = 2 kg
initial speed of the first car, u₁ = 3 m/s
mass of the second cart, m₂ = 4 kg
initial speed of the second cart, u₂ = 0
Let the final speed of both carts = v, since they stick together after collision.
Apply the principle of conservation of momentum to determine v
m₁u₁ + m₂u₂ = v(m₁ + m₂)
2 x 3 + 0 = v(2 + 4)
6 = 6v
v = 1 m/s
Impulse is given by;
I = ft = mΔv = m(
The impulse exerted by the first cart on the second cart is given;
I = 2 (3 -1 )
I = 4 N.s
The impulse exerted by the second cart on the first cart is given;
I = 4(0-1)
I = - 4 N.s (equal in magnitude but opposite in direction to the impulse exerted by the first).
Therefore, the impulse exerted by one cart on the other has a magnitude of 4 N.s.
Answer:
Hey
Say that there was no light on in the building that they were ch,at,tin,g in, then they could hear each other but not see each other.
low speed means non relativistic.
the velocities relative to an observer outside the train are added.
51 m/s.
Were ita light wave, rather than Emma, the speed wold not depend on the speed of the train. Though that may sound surprising, I think it's true. Special relativity says more about this.
Special relativity "shows up" when the speeds get very high indeed.