Answer:
Option b. is correct
Explanation:
An RLC electrical circuit consists of constituent components: a resistor (R), an inductor (L), and a capacitor (C). A resistor, an inductor, and a capacitor are connected in series or parallel.
The impedances of the circuit elements depend on the frequency.
Both impedance magnitudes decrease when the frequency increases
Answer:
960 m
Explanation:
Given that,
- Speed = 120 m/s
- Time taken = 4 minutes
We have to find the distance covered.
Firstly, let's convert time in seconds.
→ 1 minute = 60 seconds
→ 4 minutes = (4 × 60) seconds
→ 4 minutes = 240 seconds
Now, we know that,
→ Distance = Speed × Time
→ Distance = (4 × 240) m
→ Distance = 960 m
Therefore, distance covered is 960 m.
Answer:
n.6 is T
Explanation:
because mass always stays the same where ever you are but weight changes depending on the gravity
Explanation:
(a) Since, it is given that the blocks are identical so distribution of charge will be uniform on both the blocks.
Hence, final charge on block A will be calculated as follows.
Charge on block A =
= 4.35 nC
Therefore, final charge on the block A is 4.35 nC.
(b) As it is given that the positive charge is coming on block A
. This means that movement of electrons will be from A to B.
Thus, we can conclude that while the blocks were in contact with each other then electrons will flow from A to B.