1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pishuonlain [190]
2 years ago
12

A machinist turns on the power on to a grinding wheel at time t= 0 s. The wheel accelerates uniformly from rest for 10 s and rea

ches the operating angular speed of 58rad/s. The wheel is run at that angular velocity for 30 s, and then power is shut off. The wheel slows down uniformly at 1.4rad/s2 until the wheel stops. What is the total number of revolutions made by the wheel in this situation?
Physics
1 answer:
Ugo [173]2 years ago
7 0

Answer:

θt = 514.3 revolutions

Explanation:

(1)The wheel accelerates uniformly from rest for 10 s and reaches the operating angular speed of 58rad/s.

The uniformly accelerated circular movement  a circular path movement in which the angular acceleration is constant.

We apply the equations of circular motion uniformly accelerated

ωf = ω₀ + α*t  Formula (1)

θ = ω₀*t + (1/2)*α*t² Formula (2)

ωf² = ω₀² +2*α*θ Formula (3)

Where:

θ : angle that the body has rotated in a given time interval (rad)

α : angular acceleration (rad/s²)

t : time interval (s)

ω₀ : initial angular speed ( rad/s)

ωf : final angular speed ( rad/s)

Number of revolutions made by the wheel from t = 0 to t = 10 s

Data

ω₀ = 0

t = 10 s

ωf = 58 rad/s

We replace data in the formula (1) to calculate α

ωf = ω₀ + α*t

58 = 0 + α*(10)

α = 58 /10

α = 5.8 rad/s²

We replace data in the formula (2) to calculate θ

θ = ω₀*t + (1/2)*α*t²

θ = 0 + (1/2)*( 5.8)*(10)²

θ₁ = 290 rad

(2)The wheel is run at that angular velocity for 30 s, and then power is shut off.

The movement of the wheel is circular with constant angular speed and the formula to calculate θ is:

θ = ω*t

ω = 58 rad/s  , t= 30s

θ = (58 rad/s)*(30)

θ = (58 rad/s)*(30)

θ ₂= 1740 rad

(3)The wheel slows down uniformly at 1.4 rad/s² until the wheel stops.

ω₀ = 58 rad/s

α = -1.4 rad/s²

ωf = 0

We replace data in the formula (3) to calculate θ

(ωf)² = (ω₀)² + (2)*(α )*θ

0 = (58)² + (2)*(-1.4)*θ

(2)*(1.4)*θ = (58)²

θ = (58)² / (2.8)

θ = (58)² / (2.8)

θ₃ = 1201.42 rad

Total number of revolutions made by the wheel (θt)

θt =θ₁+θ₂+θ₃

θt  = 290 rad+ 1740 rad + 1201.42 rad

θt  = 3231.42 rad

1 revolution = 2π rad

θt = 3231.42 rad* ( 1revolution/2π rad)

θt = 514.3 revolutions

You might be interested in
A proton moving at 3.0 × 10^4 m/s is projected at an angle of 30° above a horizontal plane. If an electric field of 400 N/C is a
GuDViN [60]

Answer:

The time it takes the proton to return to the horizontal plane is 7.83 X10⁻⁷ s

Explanation:

From Newton's second law, F = mg and also from coulomb's law F= Eq

Dividing both equations by mass;

F/m = Eq/m = mg/m, then

g = Eq/m --------equation 1

Again, in a projectile motion, the time of flight (T) is given as

T = (2usinθ/g) ---------equation 2

Substitute in the value of g into equation 2

T = \frac{2usin \theta}{\frac{Eq}{m}} =\frac{m* 2usin \theta}{Eq}

Charge of proton = 1.6 X 10⁻¹⁹ C

Mass of proton = 1.67 X 10⁻²⁷ kg

E is given as 400 N/C, u = 3.0 × 10⁴ m/s and θ = 30°

Solving for T;

T = \frac{(1.67X10^{-27}* 2*3X10^4sin 30}{400*1.6X10^{-19}}

T = 7.83 X10⁻⁷ s

6 0
2 years ago
Applications of pressure
Sunny_sXe [5.5K]
  • hydraulic press
  • hydraulic lift
  • hydraulic jack
  • hydraulic brake
3 0
2 years ago
Find the speed of light in each of the following materials. (a) gallium phosphide m/s (b) carbon disulfide m/s (c) benzene
Oksanka [162]

Explanation:

We need to calculate the speed of light in each materials

(I). Gallium phosphide,

The index of refraction of Gallium phosphide is 3.50

Using formula of speed of light

v=\dfrac{c}{\mu}....(I)

Where, \mu = index of refraction

c = speed of light

Put the value into the formula

v=\dfrac{3\times10^{8}}{3.50}

v=8.6\times10^{7}\ m/s

(II) Carbon disulfide,

The index of refraction of Gallium phosphide is 1.63

Put the value in the equation (I)

v=\dfrac{3\times10^{8}}{1.63}

v=1.8\times10^{8}\ m/s

(III). Benzene,

The index of refraction of Gallium phosphide is 1.50

Put the value in the equation (I)

v=\dfrac{3\times10^{8}}{1.50}

v=2\times10^{8}\ m/s

Hence, This is the required solution.

7 0
3 years ago
Help me on this question plz plz
slavikrds [6]
The answer is water because since water is used to make the rainbow so they are simillar hope this was helpful!!
8 0
3 years ago
Read 2 more answers
What is the kinetic energy of a 1200 kg object that is moving at a speed of 24m/s?
n200080 [17]
Here, K.E. = 1/2 * mv²

So, K.E. = 1/2 * (1200) * (24)²

K.E. = 1/2 * 1200 * 576

K.E. = 600 * 576

K.E. = 345,600 J

Hope this helps!
6 0
3 years ago
Other questions:
  • On a hot day, you sit on the edge of a pool and dip your feet into the water, causing changes to occur that are related to the p
    11·1 answer
  • Weight is a force that depends on mass and: *
    11·2 answers
  • A thin slice of silicon that contains many solid-state components is a(an)
    5·2 answers
  • The velocity of a sky diver t seconds after jumping is given by v(t) = 80(1 − e−0.2t). After how many seconds is the velocity 65
    11·1 answer
  • What distinguishes a tornado watch from a tornado warning?
    15·2 answers
  • The sympathetic nervous system ____________digestion and _____________blood pressure. (2 points)
    6·1 answer
  • Show that atmosphere exerts pressure.
    8·1 answer
  • What are some tasks that organelles perform inside of a cell?
    15·1 answer
  • Alyssa is taking a walk on a nature path near her neighborhood. She
    11·1 answer
  • What are two ways electromagnetic waves are used in a home computer scanner?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!