Answer: The reason a light bulb glows is that electricity is forced through tungsten, which is a resistor. The energy is released as light and heat. A conductor is the opposite of a resistor. Electricity travels easily and efficiently through a conductor, with almost no other energy released as it passes.
Explanation:
Answer:
The induced current and the power dissipated through the resistor are 0.5 mA and
.
Explanation:
Given that,
Distance = 1.0 m
Resistance = 3.0 Ω
Speed = 35 m/s
Angle = 53°
Magnetic field 
(a). We need to calculate the induced emf
Using formula of emf

Where, B = magnetic field
l = length
v = velocity
Put the value into the formula


We need to calculate the induced current


Put the value into the formula


(b). We need to calculate the power dissipated through the resistor
Using formula of power

Put the value into the formula


Hence, The induced current and the power dissipated through the resistor are 0.5 mA and
.
The velocity of the cannonball is 150 m/s, the right option is B. 150 m/s.
The question can be solved, using Newton's second law of motion.
Note: Momentum of the cannon = momentum of the cannonball.
<h3>
Formula:</h3>
- MV = mv................. Equation 1
<h3>Where:</h3>
- M = mass of the cannon
- m = mass of the cannonball
- V = velocity of the cannon
- v = velocity of the cannonball
Make v the subject of the equation.
- v = MV/m................ Equation 2
From the question,
<h3>Given: </h3>
- M = 500 kg
- V = 3 m/s
- m = 10 kg.
Substitute these values into equation 2.
- v = (500×3)/10
- v = 150 m/s.
Hence, The velocity of the cannonball is 150 m/s, the right option is B. 150 m/s.
Learn more about Newton's second law here: brainly.com/question/25545050
1. Roll a ball across a table into an object
2. Drop something