Kepler noticed an imaginary line drawn from a planet to the Sun and this line swept out an equal area of space in equal times, If we then draw a triangle out from the Sun to a planet’s position at one point in time, it is notice that the area doesn't change even after the planet has left the original position say like after 2 to 3days or 2hours. So to have same area of triangle means that the the planet move faster when that are closer to the sun and slowly when they are far from the sun.
This led to Kepler's law of orbital motion.
First Law: Planetary orbits are elliptical with the sun at a focus.
Second Law: The radius vector from the sun to a planet sweeps equal areas in equal times.
Third Law: The ratio of the square of the period of revolution and the cube of the ellipse semi-major axis is the same for all planets.
It is this Kepler's law that makes Newton to come up with his own laws on how planet moves the way they do.
Answer:
Flux is 21 Nm^2/C.
Explanation:
Electric field, E = 6 N/C along X axis
Electric filed vector, E = 6 i N/C
Area, A = 4 square meter
Area vector
The flux is given by
The temperature is colder, and the water pressure is higher.
Answer:
5 Days to Seconds = 432000
Explanation:
Answer:
The change in momentum is
Explanation:
From the question we are told that
The mass of the probe is
The location of the prob at time t = 22.9 s is
The momentum at time t = 22.9 s is
The net force on the probe is
Generally the change in momentum is mathematically represented as
The initial time is 22.6 s
The final time is 22.9 s
Substituting values