-- Any object has gravitational potential energy relative to any place
lower than where the object is. The stove in the kitchen has potential
energy relative to the basement floor.
-- If an object is not moving, then it has no kinetic energy. The stove has
no kinetic energy unless you throw it or drop it out of a window.
Answer:
U2 = 47.38m/s = initial velocity of B before impact
Explanation:
An example of the diagram is shown in the attached file because of missing angle of direction in the question
Mass A, B are mass of cars
A = 1965
B =1245
U1 = initial velocity of A = 52km/hr
U2 = initial velocity of B
V = common final velocity of two cars
BU2 = (A + B)*V sin ¤ ...eq1 y plane
AU1 = (A + B) *V cos ¤ ....equ 2plane
From equ 2
V = AU1/(A + B)*cos ¤
Substitute V into equation 1
We have
U2 = (AU1/B)tan ¤ where ¤ = angle of direction which is taken to be 30°
Substitute all parameters to get
U2 = (1965/1245)*52 * tan 30°
U2 = 47.38m/s
We Know, K.E. = 1/2 × m × v²
From the expression, we can conclude that Kinetic energy is directly proportional to mass. So, as mass will increase, Kinetic energy will also increase.
In short, Your Correct answer would be Option B
Hope this helps!
Answer:
12.31 m/s
Explanation:
If we recall from the previous knowledge we had about speed,
we will know that:
speed = distance/ time.
As such:
The average speed of the rider bicycle is
average speed = total distance/ total time
Mathematically, it can be computed as:





It really depends on how far or close the planet is from the sun