The right subject for this question is physics.
To calculate the work you use the formula:
Work = force * displacement
Work = 2500 pounds * 30 feet = 75,000 pounds - feet
To calculate the power you use the formula:
power = work / time
Power = 75,000 pound - feet / 30 seconds = 2300 pound-feet / second.
The freezing point of a solution containing 5. 0 grams of KCl and 550.0 grams of water is - 0.45°C
Using the equation,
Δ
= i
m
where:
Δ
= change in freezing point (unknown)
i = Van't Hoff factor
= freezing point depression constant
m = molal concentration of the solution
Molality is expressed as the number of moles of the solute per kilogram of the solvent.
Molal concentration is as follows;
MM KCl = 74.55 g/mol
molal concentration =
molal concentration = 0.1219m
Now, putting in the values to the equtaion Δ
= i
m we get,
Δ
= 2 × 1.86 × 0.1219
Δ
= 0.4536°C
So, Δ
of solution is,
Δ
= 0.00°C - 0.45°C
Δ
= - 0.45°C
Therefore,freezing point of a solution containing 5. 0 grams of KCl and 550.0 grams of water is - 0.45°C
Learn more about freezing point here;
brainly.com/question/3121416
#SPJ4
1) is chemical Bonds
3) Conservation of mass
5) compound
hope i helped on the ones i could answer
Answer:
the answer is B its the number of protons and neutrons
The fraction of the original amount remaining is closest to 1/128
<h3>Determination of the number of half-lives</h3>
- Half-life (t½) = 4 days
- Time (t) = 4 weeks = 4 × 7 = 28 days
- Number of half-lives (n) =?
n = t / t½
n = 28 / 4
n = 7
<h3>How to determine the amount remaining </h3>
- Original amount (N₀) = 100 g
- Number of half-lives (n) = 7
- Amount remaining (N)=?
N = N₀ / 2ⁿ
N = 100 / 2⁷
N = 0.78125 g
<h3>How to determine the fraction remaining </h3>
- Original amount (N₀) = 100 g
- Amount remaining (N)= 0.78125 g
Fraction remaining = N / N₀
Fraction remaining = 0.78125 / 100
Fraction remaining = 1/128
Learn more about half life:
brainly.com/question/26374513