Answer:
Explanation:
We can only talk about resonance hybrid for a compound in which more than one structure is possible based on its observed chemical properties.
There are compounds whose chemical properties can not be satisfactorily explained on the basis of a single chemical structure. In the case of such compounds, we invoke the idea of resonance.
A resonance hybrid is a single structure drawn to represent a given chemical specie which exhibits resonance behaviour and can otherwise be represented on paper in the form of an average of two or more chemical structures separated each from the next by a double-headed arrow.
15 is the group that phosphorus is found in.
The molecular formula will be a multiple of the empirical CH2O. One unit of CH2O has a mass of 12+2*1+16 = 30 g. This means that if our compound has a molecular mass of 180 g/mol, we can divide 180 / 30 = 6 units, and our compound has 6 units of CH2O. This means that its molecular formula is C6H12O6.
The hydrogen and oxygen<span> atoms from H</span>₂O are <span>bonded together through covalent </span>bonding.
Hydroxylamine in water: HONH₂(aq) + H₂O(l) ⇄ HONH₃⁺(aq) + OH⁻(aq).
Hydroxylammonium nitrate in water: HONH₃NO₃(aq) → OHNH₃⁺(aq) + NO₃⁻(aq).
1) with positive hydrogen ions (protons) react base and gives weak conjugate acid:
H⁺(aq) + HONH₂(aq) ⇄ HONH₃⁺(aq).
2) with hydroxide anions react acid and produce weak base and weak electrolyte water:
HONH₃⁺(aq) + OH⁻(aq) ⇄ HONH₂(aq) + H₂O(l).